Social and Caring Tutors

Beverly Park Woolf

If computers are to interact naturally with humans, they must express social competencies and recognize human emotion. This talk describes the role of technology in responding to both affect and cognition and examines research to identify student emotions (frustration, boredom and interest) with around 80% accuracy using hardware sensors and student self-reports. We also discuss “caring” computers that use animated learning companions to talk about the malleability of intelligence and importance of effort and perseverance. Gender differences were noted in the impact of these companions on student affect as were differences for students with learning disabilities. In both cases, students who used companions showed improved math attitudes, increased motivation and reduced frustration and anxiety over the long term. We also describe social tutors that scaffold collaborative problem solving in ill-defined domains. These tutors use deep domain understanding of students’ dialogue to recognize (with over 85% accuracy) students who are engaged in useful learning activities. Finally, we describe tutors that help online participants engaged in situations involving differing opinions, e.g., in online dispute mediation, bargaining, and civic deliberation processes.

The final publication is available at Springer via https://doi.org/10.1007/978-3-642-13388-6_5.