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Preface

The 20th International Conference on Intelligent Tutoring Systems (ITS 2024) was held
in Thessaloniki, Greece, from June 10 to June 13, 2024.

ITS 2024 is evolving to a new concept of Artificial Intelligence which can be found
in various disciplines and can serve human education and well-being. This new concept
is named: Generative Intelligence. Generative Intelligence concerns various AI systems,
techniques, architectures, methods, or tools based onmachine learning in particular deep
learning which can be used to generate texts, images, solutions, and environments, able
to enhance Human Intelligence, cognitive capacities, memory, and learning. Instead of
trying to reproduce human behavior or recognize human traits using artificial intelligence
techniques or learning analytics, Generative Intelligence provides means to increase
human cognitive potential.

The conference featured eight distinct tracks in which the concepts mentioned above
contribute to the increase of Generative Intelligence. Each track included (but was not
limited to) a list of topics of interest which can be found below. Submitted papers refer
to one of the tracks here below.

Conference tracks

T1: Generative Intelligence in Tutoring Systems

The goal of this track was to show how new techniques inspired by artificial intelligence
and new methods in education can improve learning and teaching and generate the
capacity for knowledge acquisition. The topics of this track include generative learning
strategies, distance education, learning analytics for tutoring systems, deep learning
and machine learning for tutoring systems, online and distance learning, generative
learner models, emotion recognition, human-machine interaction, case-based reasoning,
cognitive modeling, open learning, authoring systems, cultural learning, and adaptive
learning.

T2: Generative Intelligence in Healthcare Informatics

The goal of this track was to show the progress of AI tools for increasing the propaga-
tion of healthcare techniques and their efficiency. Informatics providesmeans to improve
the prediction, analysis, and treatment of disease and patients’ control over their own
care. The topics of this track were AI and telemedicine, medical image processing,
virtual systems for healthcare, learning analytics in medicine, progress of AI for non-
pharmacological Alzheimer’s treatments, predictive modeling of healthcare, intelligent
tutoring systems in medicine, machine learning and deep learning in healthcare, AI in
medical education, AI in public health, home management of healthcare, neurofeedback
techniques, games for healthcare, virtual reality (VR), and augmented reality (AR).

T3: Human Interaction, Games, and Virtual Reality

The goal of this track was to show the progress of interactive games using generative
intelligence techniques. Intelligent games can adapt to the characteristics of the player
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and canbe used to enhance learning, skills,memory, cognitive capacities, brain-computer
interaction, and strategic decisions. They can be used in various applications (education,
healthcare, group management, decision support systems, industry control). Multimedia
allows an increase in the receptivity of sensors and reactions. The topics of this track
included Brain-Computer Interaction (BCI), game design, intelligent immersive games,
multi-agent systems, educational games, social games, generative simulations, theory
of games, reinforcement learning in games, virtual and generative reality, simulation
training, emotions recognition, neurofeedbackgames, generative scenario design, human
interaction with games, multimedia technologies in games, fuzzy systems in games,
artificial intelligence in games, and games content generation.

T4: Neural Networks and Data Mining

This track was a crucible for innovation, where the latest techniques in machine learning
intersect with the rich, untapped data of educational environments, aiming to revolu-
tionize the pedagogical landscape and pave the way for a future where intelligent tutor-
ing systems are as nuanced and insightful as the educators they seek to augment. The
topics of this track include supervised machine learning, genetic algorithms, Marko-
vian regulation, smart sensor networks, determinate regulation, games and strategies,
fuzzy systems, web information processing, applications of data mining in social sci-
ences, data-driven reasoning, deep learning and statistical methods for data mining, big
data mining, algorithms for data mining, ethical data analytics, and data mining for
recommendation.

T5: Generative Intelligence and Metaverse

This track was dedicated to exploring the innovative synthesis of generative algo-
rithms and the boundless educational landscapes within virtual environments.We delved
into how generative AI is revolutionizing personalized learning experiences, creating
dynamic content, and fostering engaging educational models that are as limitless as the
Metaverse itself. Participants gained insights into the latest advancements, discussed
the integration of AI-driven pedagogies in virtual spaces, and engaged with ground-
breaking research that shapes the future of learning. Here, educators, technologists, and
researchers came together to craft the nexus of next-generation learning platforms–where
intelligence generation meets the expanse of the Metaverse, setting a new paradigm in
digital education. The topics of this tracks included technology and creativity around
Metaverse, gaming and interactivity, mixed reality and virtual world, social and digital
identity, extended reality, digital art, social communication, applications of Metaverse
in health, and global Metaverse.

T6: Security, Privacy, and Ethics in Generative Intelligence

Aswe step into an erawhereAI’s capabilities to generate content are nearly indistinguish-
able from human output, we must also navigate the complex web of security challenges,
privacy concerns, and ethical dilemmas that accompany these advancements. This track
offered a multidisciplinary forum for examining the safeguarding of digital identities,
the protection of intellectual property, and the moral imperatives guiding AI interac-
tions in educational settings. Experts, scholars, and practitioners from around the globe
converged to share their wisdom, debate best practices, and forge strategies to ensure
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that generative intelligence develops in a manner that is secure, respects privacy, and
adheres to the highest ethical standards. Together, we will chart the course for responsi-
ble stewardship of AI technologies that enhance learning while honoring the trust placed
in them by educators and learners alike. The topics of this track included commercial
security, data privacy and security, web security, applied cryptography, authentication,
identity management and biometrics, electronic payments, culture of ethics, business
and human rights, diversity and inclusion in teaching and learning, environmental ethics,
machine learning and security, cloud computing and data outsourcing security, mobile
payments, security in games, security of peer-to-peer networks, security metrics, sus-
tainability, language-based security, security and privacy for the Internet of Things, and
socio-technical security.

T7: Generative Intelligence for Applied Natural Language Processing

This track was dedicated to unearthing and showcasing the transformative power of gen-
erative models that are reshaping the way we interact with language in computational
settings. It served as a beacon for those who are leveraging these advancements to build
sophisticated tutoring systems capable of understanding, generating, and personaliz-
ing language-based interactions. The topics of this track included language modeling,
domain ontologies, computational linguistics, cognitive semantics, text mining, trans-
lation, question answering, dialogue systems, information retrieval, speech recognition
and synthesis, discourse, machine translation, and lexical semantics.

T8: Generative Intelligence for Autonomous Robots and Learning

Generative intelligence with robots includes a variety of new criteria that provide more
human characteristics to robots. Such elements concern emotions, mood, and facial
expressions which give a more realistic interaction with humans. They transform robots
into useful human-like companions. The topics of this track included butwere not limited
to emotional robots, voice recognition, intelligent agents, autonomous robots, planning
and Goal reasoning, entertainments robotics, intelligent systems and robotics, applica-
tions of autonomous intelligent robots, sensors and vision systems for robots, generative
exploration in hazardous situations, extraction of environment maps, robots in medicine,
and teaching robots.

The call for scientific papers solicited works presenting substantive new research
results in using generative artificial intelligence (GenAI), advanced computer tech-
nologies and interdisciplinary research for enabling, supporting, and enhancing human
learning.

The international Program Committee consisted of 78 leading members (32 senior
and 46 regular) of the Intelligent Tutoring Systems and AI communities, assisted by
additional external reviewers.

Research papers came from 25 countries and were each reviewed by three reviewers
through a double-blind process. ITS 2024 retained the strict and high standards in the
review process that were established during the previous years, and which have rendered
it a top-flight, rather selective, and high-quality conference. This year, 35 papers were
accepted as full, whereas 28 papers were accepted as short. We believe that the selected
full papers describe some very significant research and the short papers some very
interesting new ideas.
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The management of the review process and the preparation of the proceedings was
handled through the EasyChair platform.

ITS 2024 had two outstanding Invited Speakers in the plenary sessions: Eftychios
Protopapadakis (University ofMacedonia,Greece), a renownedfigure inMachineLearn-
ing,Optimization, andComputerVision, andGiannaMartinengo,CEOofDidaelKnowl-
edge Technologies Services and President ofWomen&Tech ETS, specializing in Learn-
ing and AI (Milano, Italy). Both are leaders in different specialized areas of the ITS field.
In addition, ITS 2024 had an excellent Tutorial Speaker: Panagiotis Fotaris (University
of Brighton, UK), specializing in Digital Games and User Experience Design.

Moreover, ITS 2024 hosted two workshops, one under the title: Breaking Barriers
with Generative Intelligence (BBGI’24) and another one under the title: Digital Trans-
formation in Higher Education. Empowering Teachers and Students for Tomorrow’s
Challenges (Back2Basics). The program of ITS 2024 also included a panel on Potential
Ways of Creative Use of Gen AI (e.g., ChatGPT) in Computer Science Departments.

In addition to the contributors mentioned above, we would like to thank all the
authors, themembers of theProgramCommittees of all tracks, the external reviewers, and
the Steering Committee members as well as the Hosting Institution of the Conference,
the University of Macedonia, in Thessaloniki, Greece.

We finally would like to acknowledge that ITS 2024 was held under the auspices of
the Institute of Intelligent Systems (IIS) and was organized by Neoanalysis Ltd, under
the guidance of Kitty Panourgia, the Organization Chair, and her team.

April 2024 Fuhua Lin
Angelo Sifaleras
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Unleashing Potential: Harnessing the Power of Generative
AI in Intelligent Tutoring Systems

Eftychios Protopapadakis

Department of Applied Informatics, University of Macedonia,
156 Egnatia Street, GR-546 36 Thessaloniki, Greece

eftprot@uom.edu.gr

Abstract. Intelligent Tutoring Systems (ITS) fueled by Generative AI
(genAI) provide an exceptional opportunity to revolutionize education.
Offering personalized learning experiences, tailored to individual needs
and preferences, is not an easy task, yet it becomes easier by the year.
In this keynote, we explore how genAI-powered ITS can transcend the
limitations of traditional education models, paving the way for a new era
of cognitive empowerment and skill development.

Through advanced algorithms and adaptive learning techniques,
genAI-powered ITS can deliver targeted instruction, personalized prac-
tice problems, and immersive simulations that foster critical thinking and
problem-solving skills. By leveraging the unique capabilities of genera-
tiveAI, educators can further boost the humancognitive potential,moving
beyond rote memorization to cultivate deep understanding and mastery.

However, alongside the promise of genAI-powered ITScome inherent
challenges thatmust be addressed.Biases embeddedwithinAI algorithms
and concerns regarding data privacy and security demand careful consid-
eration. Yet, by proactively addressing these challenges and fostering
collaboration between AI developers, educators, and policymakers, we
can ensure the responsible and ethical application of genAI in education.

The importance of collaboration and partnership between AI and
human educators is a topic worthy of investigation. By combining the
expertise of AI algorithms with the guidance and mentorship of teach-
ers, we can create a symbiotic relationship that enhances the learning
experience and maximizes student outcomes. Together, we can envision
a future where genAI-powered ITS play a central role in democratizing
education, empowering learners of all backgrounds to reach their full
potential and contribute meaningfully to society.

Keywords: Intelligent Tutoring Systems · Generative AI · Personalized
Learning · Cognitive Potential · Educational



Sharing from Experience: Competencies for “Intelligent
Dialogues” with Emerging Technologies

Gianna Martinengo

CEO and Founder of Didael KTS and President of Women&Tech® ETS,
DKTS: Digital Knowledge Technologies Services, Via Ampère 61/A,

20131 Milan, Italy
gianna.martinengo@didaelkts.it

Abstract.We have witnessed the various phases of technologies support-
ing human learning and at the same time of artificial intelligence since
1982,mainly bymeans of business initiatives,within hundreds of projects
of private and public interest including many EU pre-competitive ones.
Lessons learned and tips for the future are at the core of our talk. The
main issues we privilege are knowledge, competencies, and ethics for the
future of modern, interactive AI including human learning as a first pri-
ority. As a side effect, we will shortly describe our efforts for women, by
demonstrating the interest of a true complementarity between genders,
as a source of innovation in society: future business as well as academic
initiatives. Last, we briefly quote our contribution to the EU Parliament
for the AI act recently approved. We are proud to see the initial imple-
mentation of an AI office, dedicated to the certification of AI products
and services, as we proposed, motivated and documented in our written
reports in 2021.

Keywords: digital transformation · AI · ethics · change management ·
evolving society · women’s empowerment
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Abstract. The latest developments in Large Language Models (LLMs)
open the door to significantly improving scaffolding and support when
supervising word problem-solving. In this paper, we examine the poten-
tial of a large variety of open models for solving different types of arith-
metical problems and discuss the potential implications for the develop-
ment of Intelligent Tutoring Systems (ITSs). The results reported show
that relatively small LLMs are able to correctly solve around two-thirds
of single-stage word problems, obtaining a similar performance as chil-
dren. Nevertheless, their behavior varies in terms of their ability to pro-
vide the correct solution for specific conceptual schemes. Beyond their
potential as a problem-solving tool, the research presented opens the door
to using LLMs for the implementation of virtual agent-based students.

Keywords: Large Language Models · Word problem solving ·
Intelligent Tutoring Systems

1 Introduction

Proficiency in problem-solving is closely linked to academic success in educa-
tional contexts, while difficulty in this skill is associated with academic challenges
and potential failure in school [11,17]. In the development of problem-solving
skills, word problems have become a crucial component of the mathematics cur-
riculum, aiding in the development of students’ mental abilities, logical analysis,
and creative thinking skills.

Intelligent Tutoring Systems (ITSs) have emerged as a valuable tool for
enhancing students’ problem-solving skills, particularly in the domain of word
problems. These systems leverage artificial intelligence and interactive inter-
faces to provide personalized learning experiences tailored to individual students’
needs. By offering step-by-step guidance, feedback, and hints, ITSs help learn-
ers develop critical thinking and mathematical reasoning abilities essential for
tackling complex word problems effectively. Some examples of ITSs designed
specifically for word problem-solving include AnimalWatch [5], MathCAL [7],
Ms. Lindquist [15], PAT (Pump Algebra Tutor) [16] and HINTS [2,13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 3–13, 2024.
https://doi.org/10.1007/978-3-031-63028-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63028-6_1&domain=pdf
http://orcid.org/0009-0000-0234-1245
http://orcid.org/0000-0002-0350-2079
http://orcid.org/0009-0002-0090-8089
http://orcid.org/0000-0002-1078-3120
https://doi.org/10.1007/978-3-031-63028-6_1


4 J. Arnau-Blasco et al.

Recent advances in Natural Language Processing (NLP) and strong evidence
that narratives and chatbot-mediated help can enhance learning experiences
for children [25] have encouraged the integration of chatbots to provide stu-
dent support [8]. Some initiatives in this direction include Mathbot [14], the
adapted version of HINTS presented in [1,3] or the integration of a chatbot to
support scaffolding in an existing platform described in [8]. However, most exist-
ing math-focused chatbots use traditional rule-based algorithms and neglect the
transformative capabilities of generative Artificial Intelligence (AI) [8].

Indeed, new Large Language Models (LLMs) such as ChatGPT [34] or other
freely available alternative models like LLaMA 2 [29] present numerous new
opportunities in education. The largest models, with several tens of billions of
parameters, exhibit surprising capabilities or behaviors that were not specifically
programmed [36]. These skills are known in the literature as emergent abilities
[33], ranging from performing specific tasks to understanding linguistic nuances,
making logical inferences, and even generating creative content unexpectedly.
Such skills, especially those related to task decomposition into simpler steps,
can be leveraged to generate AI-based agents that support scaffolding in math-
related tasks. Nevertheless, we need to take into account that these agents are
prone to errors, and hence rigorous testing is essential to ensure their reliability
and effectiveness in assisting learners.

In this paper, we examine the reliability of a wide range of open LLMs in
the context of word problem-solving. As the majority of scaffolding methods pri-
marily focus on guiding learners through individual steps of problem-solving pro-
cesses rather than providing comprehensive support across the entire problem-
solving task, we have focused on single-step problems and analyzed the perfor-
mance according to the skills required to solve the step. The research presented
serves as an initial exploration into assessing the capabilities of LLMs to sup-
port scaffolding strategies in learning word problem-solving. This includes their
potential application either as a feedback mechanism or integrated within col-
laborative learning settings to deploy virtual students who interact with children
to jointly discover solutions to word problems.

2 Skill-Based Categorization

A word problem presents a scenario where quantities are connected, and at least
one of them needs to be determined through calculation. Solving these problems
requires performing arithmetic operations such as addition, subtraction, multi-
plication, and division. Although word problems can describe a large variety of
different situations, solving them involves applying a limited set of conceptual
schemes. These conceptual schemes are linked to the semantics of word prob-
lems and have proven effective in predicting problem difficulty accurately [24],
outperforming the predictive power of the number of arithmetic operations that
are necessary to solve the problem. When solving word problems involving non-
negative numbers, three additive schemes and three multiplicative schemes have
been typically identified in the literature. The three additive schemes, described
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in [24] for situations involving natural numbers are change, combine, and additive
comparison. Additionally, another scheme called equalize is mentioned in other
studies but can be considered a combination of other problem schemas [30] and
we do not use it in our study. Regarding multiplicative schemes, we can differen-
tiate between isomorphism of measures, multiplicative comparison, and product
of measures [32]. Furthermore, each conceptual scheme is subdivided into spe-
cific subtypes, offering a detailed understanding of the required problem-solving
skills. These subtypes include 2 types of combine (C1, C2), 6 types of change
(CH1–CH6), 6 types of additive comparison (AC1–AC6), 3 types of isomorphism
of measures (IM1–IM3), 6 types of multiplicative comparison (MC1–MC6), and
3 types of product of measures (PM1–PM3).

3 Methodology

3.1 Dataset

To evaluate the performance of the different LLMs considered in this work at
solving each type of conceptual scheme, we used the SVAMP (Simple Varia-
tions on Arithmetic Math word Problems) dataset [23]. SVAMP contains 1,000
math word classified entries, each featuring a problem statement and a question.
An example is shown in Fig. 1. The label refers to the operations involved in
the calculation of the solution: subtraction, multiplication, common division, or
addition. As this labeling is insufficient for accurately capturing the intrinsic dif-
ficulty associated with each problem, we re-labeled the entire dataset by assign-
ing each problem another label that matched the conceptual scheme involved
in calculating the solution, according to the conceptual scheme taxonomy previ-
ously described in Sect. 2. In addition, to concentrate on evaluating each model’s
ability to offer assistance for individual steps in problem-solving processes, we
eliminated problems that cannot be solved in a single step. These tasks were
performed by an expert in mathematics education. To minimize errors, the pro-
cess was repeated twice with a two-week interval between the two classifications.
There was only one disagreement in one label, which was carefully examined to
determine the correct designation. The resulting dataset contained a total of 741
single-step problems. This collection included representative labeled instances of
all three subtypes of isomorphism of measures, four out of the six subtypes of
additive comparison, both subtypes of combination, and all six types of change.
The number of samples in each conceptual scheme is shown in Table 1.

3.2 LLMs Considered

We have examined the performance of several LLMs at solving the problems
in the re-labeled version of the SVAMP dataset. We prioritize affordable mod-
els that can be seamlessly integrated into existing or new systems at minimal
expense. Hence, the tested models were chosen considering their open-source
nature, ease of deployment, computational cost, and compatibility with the con-
straints imposed by our available hardware. All models considered belong to the
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Fig. 1. SVAMP problem example.

Table 1. Number of samples in each class. Classes include conceptual schemes sub-
types that appear in the dataset, namely 2 types of combine (C1, C2), 6 types of
change (CH1–CH6), 4 types of additive comparison (AC1, AC3–AC5) and 3 types of
isomorphism of measures (IM1–IM3).

Classes IM1 IM2 IM3 C1 C2 CH1 CH2 CH3 CH4 CH5 CH6 AC1 AC3 AC4 AC5

Samples 76 72 66 79 65 22 40 17 39 10 24 188 19 8 16
Total 741

LLaMA 2 [29] family, and can easily be obtained from Ollama1 or Hugging-
Face2, facilitating the replication of the experiments. We used the foundation
model from Meta [29], but also other re-trained and/or fine-tuned models for
specific tasks. They have all been evaluated in their 7 and 13 billion parameter
versions, to assess the effect of larger models on the results. The different models
involved in our comparison are summarized in Table 2.

Table 2. Summary of models considered

Family Training Model name

LLaMA 2 General purpose Foundation [29]
Beluga [18]
Vicuna [9]

Reasoning/maths problems MetaMath [35]

The Foundation [29], Beluga [18] and Vicuna models [9] have all been trained
with data not related to mathematical problems, and problem-solving capabil-
ities are an emergent ability [33]. The MetaMath model [35] was trained with
the MetaMathQA dataset, which is specialized in mathematical reasoning. Its
inclusion in the comparison aims to assess the effect of training with specific
data.
1 https://ollama.ai.
2 https://huggingface.co.

https://ollama.ai
https://huggingface.co
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3.3 Experimental Setting

Our experiments were run on a system equipped with a single NVIDIA RTX
4090 GPU, with 24 GB of memory. The prompt used was shared among the
different LLMs. It started with “Solve the following exercise: ” and was followed
with the problem body and question. For example, the prompt for the problem
example shown in Fig. 1 was “Solve the following exercise: Dan had $3 left with
him after he bought a candy bar. If he had $4 at the start. How much did the
candy bar cost?”

The format of the system response varied across different LLMs and depended
on the exercise. In some cases, the result was given at the beginning of the
response and was followed by an explanation. In other cases, the answer was
provided at the end of the response. To cope with all the different variations, a
parser was used to filter the system response. To this end, all numbers in the
response were extracted and compared to the answers provided in the dataset.
A solution was considered correct if any of these numbers matched the correct
answer. While this method inherently identifies incorrect solutions, there is a
possibility of evaluating an incorrect solution as correct if the correct answer
to the problem is embedded within an explanation. This scenario is more likely
to happen when the problem involves intermediate quantities with the same
numeric value as the problem solution, a situation that is highly improbable in
single-step problems. In this case, the problem would be considered as correctly
solved once the value of the intermediate quantity is found. For each LLM, we
manually tested this potential situation on a collection of 10 random problems
extracted from SVAMP that were evaluated as correct, and it never happened.
Although this sample of 10 problems represents only around 2% of all problems
correctly solved, we considered that the effect of this potential situation is limited
and would not significantly alter the results reported.

4 Results

The performance achieved with each model is expressed in Table 3 as the percent-
age of correctly solved problems for each conceptual scheme type and subtype.
The last row in the table summarizes the performance under a single number,
which represents the percentage of problems correctly solved by each LLM.

The positive effect of fine-tuning the model with a dataset in a close domain
reflects on the results obtained by MetaMath [35], which is especially relevant
for the smaller models. A higher performance is clear and consistent across all
types for the 7 billion parameter models. For the largest models, MetaMath
also shows a substantially better performance for the change (CH) and additive
comparison (AC) conceptual schemes, but the Foundation model behaves better
for the combine (C) type, and similar performance is observed for isomorphism
of measure (IM).

In addition, the improvement achieved by the 13 billion parameter models
as compared to the 7 billion one is quite noticeable along all models and most
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Table 3. Detailed results for each conceptual scheme type and subtype, expressed as
the percentage of correctly solved problems. Values in bold represent the highest for
a particular conceptual scheme when the number of parameters is fixed to the same
value.

7 billion parameters 13 billion parameters
C Scheme Foundation Beluga Vicuna MetaMath Foundation Beluga Vicuna MetaMath
IM1 63.16 43.42 47.37 69.74 78.95 50.00 67.11 73.68
IM2 31.94 19.44 19.44 34.72 52.78 29.17 37.50 43.06
IM3 63.64 30.30 45.45 63.64 71.21 53.03 46.97 80.30
IM 52.80 31.31 37.38 56.07 67.76 43.93 50.93 65.42
C1 41.77 29.11 39.24 46.84 56.96 43.04 46.84 51.90
C2 67.69 48.46 41.54 66.15 76.92 53.84 46.15 69.23
C 53.47 33.33 40.28 55.56 65.97 47.92 46.53 59.72
CH1 81.82 36.36 45.45 54.55 68.18 36.36 63.64 72.73
CH2 57.5 45.00 37.50 87.50 70.00 57.50 60.00 75.00
CH3 70.59 23.53 47.06 82.35 76.47 41.18 47.06 88.24
CH4 69.23 33.33 46.15 69.23 41.03 35.90 53.85 79.49
CH5 60.00 30.00 50.00 50.00 70.00 60.00 30.00 50.00
CH6 16.67 8.33 45.83 83.33 62.50 54.17 50.00 91.67
CH 59.21 31.58 44.08 74.34 61.84 46.71 53.95 78.29
AC1 54.79 38.83 38.83 68.09 61.17 51.60 52.66 62.23
AC3 52.63 10.53 15.79 57.89 10.53 31.58 57.89 84.21
AC4 37.50 12.50 12.50 75.00 37.50 25.00 50.00 87.50
AC5 18.75 6.25 25.00 68.75 31.25 25.00 56.25 81.25
AC 53.95 35.35 35.81 67.44 55.81 48.84 53.02 65.12
Overall 53.85 32.39 38.60 63.29 61.94 46.29 51.42 67.21

conceptual schemes. This is aligned with the arguments provided in [36] that
link emergent abilities to larger models with a higher number of parameters.

It is also interesting to compare the solving ability of the LLMs to that of
children, based on well-established previous studies by other researchers. The
results in Table 4 are taken from [21], and indicate the percentage of correct
solutions in several studies, for each conceptual scheme. Although researchers
used a distinct set of word problems, resulting in potential fluctuations in abso-
lute success rates, the values presented can be used as a scale of relative difficulty
levels for children. Surprisingly, although values in Tables 3 and 4 are on a sim-
ilar scale, it can be observed that they do not correlate in terms of the relative
difficulty associated with each scheme. For example, while data in Table 4 show
that students have fewer problems facing the C1 than the C2 conceptual scheme,
LLMs show a higher performance with the C2 scheme. Similarly, LLMs show rel-
atively higher performance for CH3, while children seem to face more difficulty
in dealing with this conceptual scheme when compared to others within the same
type. Another interesting effect can be observed when comparing AC vs C types.
Children seem to find the AC type more challenging, the same as models that
have been trained with general-purpose datasets. However, the performance of
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MetaMath is just the opposite and seems to perform generally better on the
AC conceptual scheme. These differences suggest that the LLMs fail to replicate
the mathematical aptitude observed in children, showing significantly different
behaviour. These differences could be exploited when using LLMs to support
students with learning difficulties or special needs [10], using a language model
specifically adept at their learning weaknesses.

Table 4. Results obtained in several studies for each conceptual scheme, expressed as
a percentage of correctly solved problems [21]. For ease of comparison, the results for
the generally best-performing tested model (MetaMath with 13 billion-parameter) are
replicated as a reference in the rightmost column of both tables.

Carpenter et al. [6] Fischer [12] Nesher & Teubel [22] Nesher & Katriel [20] Nesher [19] MetaMath [35] (13 billion)
Year 1981 1979 1975 1978 1981 2024
Level 1st 2nd 5th 2nd-6th 2nd-6th –

C1 86 – – 79 79 51.90
C2 46 14 – 46 52 69.23
CH1 79 – – 87 82 72.73
CH2 72 30 – 70 75 75.00
CH3 51 – – 62 72 88.24
CH4 – – – 75 77 79.49
CH5 – 5.5 – – 48 50.00
CH6 – – – – 49 91.67
AC1 67 – – – 76 62.23
AC3 23 – 87 – 65 84.21
AC4 – – 81 – 66 87.50
AC5 – – 43 – 60 81.25

Steffe & Johnson [27] Riley et al. [24] Tamburino [28] Vergnaud [31] MetaMath [35] (13 billion)
Year 1971 1981 1980 1976 2024
Level 1st 1st 2nd K 2nd–6th –

C1 67 100 100 83 – 51.90
C2 35 39 70 18 – 69.23
CH1 67 100 100 89 – 72.73
CH2 43 100 100 91 85 75.00
CH3 41 56 100 8 – 88.24
CH4 41 78 100 64 70 79.49
CH5 67 28 80 32 – 50.00
CH6 35 39 70 – 69 91.67
AC1 – 28 85 – – 62.23
AC3 – 17 80 – – 84.21
AC4 – 28 90 – – 87.50
AC5 – 11 65 – – 81.25

5 Conclusions

In this paper, we have examined the performance of several LLMs at solving
word problems. Results show that relatively simple models with 13 billion param-
eters can reach similar performance as children, opening new opportunities for
technology-supported learning. Potential uses include the design of scaffolding
strategies based on conversational agents that advise the student while solving
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the problems, or the implementation of collaborative learning settings that use
these agents to simulate human behavior and play the role of classmates.

In between our findings, the observed capabilities of LLMs seem to differ
from those of children, exhibiting notably distinct proficiency levels in tackling
various conceptual schemes. This aspect is particularly interesting and useful
when considering the integration of virtual agent-based students into collabora-
tive environments. In this case, the observed differences in skill levels compared
to those of children are a desirable feature that can contribute to enriching the
learning experience by providing diverse perspectives on problem-solving. Fur-
ther research is also needed to identify potential reasons for these differences,
that could stem from the training data utilized to construct the model, poten-
tially skewed towards adult-centric content.

However, despite the positive results, the solving abilities exhibited by the
LLMs tested still do not reach sufficient accuracy to allow them to replace other
advanced ad-hoc feedback mechanisms specifically designed to offer adaptive
support, e.g. [13]. Some recent works have examined the possibility of using
LLMs to generate an intermediate representation that allows monitoring of the
student’s solution [4], and this is another research line that deserves further
exploration.

We should also note several limitations of the present study, which has only
considered 8 different models with a maximum size of 13 billion parameters.
Enhanced emergent capabilities are noted to be more prominent in larger-scale
models, as highlighted in [36]. Some recent models are considerably larger, reach-
ing 530 billion parameters in the transformer-based Megatron-Turing Natural
Language Generation (MT-NLG) model [26]. Although using such models on
educational systems may prove unfeasible in the majority of cases, it is imper-
ative to investigate the impact of quantization for downsizing larger models,
aiming to reach the optimal balance between cost and performance.

Another aspect that deserves attention is the design of the prompt. While
the one used seems a natural choice, an investigation of other alternatives may
yield higher performance. Other designed prompts may be better suited to offer
direct assistance to students or create agents intended to seamlessly integrate as
virtual classmates in collaborative environments. In addition, the results have
underscored the high influence of the training dataset on performance, observ-
ing a notable benefit when a domain-adapted dataset is used for training. The
substantially different behaviour offered by each model can be leveraged to imple-
ment different profiles and endow agents with specific performance-related traits.
Lastly, we shall also mention as a limitation of the study that the dataset was
labeled by a single expert. Although it is a fairly straightforward labeling task
for an expert and was performed twice with a two-week gap, the participation
of multiple experts in the process would have enhanced the labeling’s reliability.

Despite the limitations mentioned above, the research presented in this paper
represents an initial exploration that underscores the potential of LLMs as
problem-solving tools. However, further research is necessary for the development
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of agents capable of seamlessly integrating into computerized systems dedicated
to teaching mathematical problem-solving skills.
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Abstract. Adaptive user feedback facilitates the delivery of personal-
ized assistance to students struggling with self-learning and enhances
their overall learning effectiveness. However, numerous studies on stu-
dent behavior have revealed that they may not consistently utilize help-
seeking functions. Deciding when a system should assist students during
the dynamic learning process poses a challenge. We propose a new app-
roach called Transformer4HELP, which enables the system to proactively
assist students in their learning process interactions in a generative way.
We employ an auto-regressive masking strategy to train a decoder-based
transformer for prediction, assessing the necessity of providing help at
each time step based on the likelihood that intervention may benefit
the user’s actions. To evaluate this approach, we used real behavioral
data from students engaged in solving arithmetic mathematical prob-
lems. The experimental results demonstrate the effectiveness of the pro-
posed method, reaching an AUC of 0.84 when predicting whether the
student needs help.

Keywords: Intelligent Tutoring Systems · assistance dilemma ·
proactive hints · problem solving · transformer

1 Introduction

Intelligent Tutoring Systems (ITSs) provide customized guidance to students,
offering adaptive feedback and hints tailored to each individual’s learning
progress, enriching their learning experiences. Providing targeted assistance
to students can optimally mitigate their frustration produced by the learn-
ing process, fostering motivation and improving learning outcomes. However,
researchers have found that students do not always display appropriate help-
seeking behaviors. Some fail to utilize hints when they are genuinely needed (help
avoidance), while others overuse hints to solve problems they could tackle inde-
pendently (help abuse) [3,17]. This has garnered attention within the research
community at ITSs, addressing the challenge of deciding when and whether to
assist students, named the assistance dilemma.
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A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 14–26, 2024.
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The assistance dilemma can be defined as a trade-off problem, attempting to
balance information giving and withholding to achieve optimal learning outcomes
[14]. A fundamental aspect of the assistance dilemma is discovering instances
when students are unproductive and subsequently deciding how and what hints
the virtual tutor should offer. To tackle this challenge, early studies primarily
focused on on-demand graded hints [19,20], in which students asked the system
for help. In common cases, students indicated their need for help by pressing the
Help button option. Nevertheless, these approaches sometimes led to undesirable
student behaviors, ranging from help avoidance to help abuse [3,7]. One possible
solution to avoid these suboptimal behaviors is to implement unsolicited hints,
where the system proactively offers assistance to students without them having
to request it.

In this work, we focus on autonomously identifying situations that war-
rant assistance and introduce an approach proficient in automatically detecting
instances where aid is needed. In typical e-learning contexts, students iteratively
interact with the system performing a series of actions. We capture and organize
these interactions throughout the session in a chronological sequence. Then, we
predict the need for assistance by leveraging the historical behaviors of previous
students to determine if the current student’s progress is becoming unproduc-
tive and whether intervention is warranted. The method has been validated in
a dataset that includes records of student behavior during arithmetic maths
problem-solving tasks. The results demonstrate the potential of the method for
the task at hand.

2 Related Work

2.1 Assistance Dilemma and Proactive Hints

Building on the work of Aleven et al. [14], unsolicited hints or feedback have
emerged as solutions to prevent help avoidance and help abuse. However, liter-
ature on mechanisms to provide this type of hints is surprisingly scarce, despite
the potential benefits associated with their implementations. In between rele-
vant works, a recent proposal introduced a framework aimed at understanding
students’ help-seeking behavior through the analysis of action sequences that
ended in help requests [12]. With regard to particular implementations, Fossati
et al. [10] presented the linked list Tutor, which generates proactive feedback
using a procedurally constructed knowledge model derived from prior student
interactions. The results demonstrated the tutor’s effectiveness in facilitating
student learning, including proactive feedback brings its performance closer to
that of a human tutor. Maniktala et al. [16] introduced the HelpNeed model to
predict when students require assistance and determine the appropriate hints
to provide in logic problems. This approach built upon and extends the Hint
Factory [20], which employed a Markov Decision Process to predict the neces-
sary hints. Additionally, it incorporated related features into various machine
learning techniques to classify whether students are currently in a productive or
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unproductive state. The results demonstrated that using proactive hints effec-
tively promotes the appropriate utilization of help, reducing instances of help
avoidance and help abuse. More recently, Maniktala et al. [15] incorporated stu-
dents’ hint usage into the HelpNeed model and demonstrated its effectiveness in
significantly reducing false positive cases, thereby improving the system’s per-
formance in assisting student behavior. Additionally, Alam et al. [1] introduced
a deep reinforcement learning policy that leverages autoencoder-based feature
learning to offer proactive assistance. The results underscored the effectiveness
of this approach.

2.2 Sequence Modelling

Proactive hints can be formulated as a sequence modelling problem. The sys-
tem needs to model a sequence of user actions, learn the probability of previous
actions, and then predict the most likely next action based on contextual infor-
mation. Finally, the system decides whether to provide help or not based on the
predicted action.

Recurrent Neural Networks (RNNs) and their variants, such as Gated Recur-
rent Units (GRU) and Long Short-Term Memory (LSTM), have gained popu-
larity for modeling sequences of user behaviors. For instance, GRU4Rec [11]
incorporates RNN into session-based GRU with ranking loss, yielding effective
results. Other prevalent research is based on attention-based neural networks.
As the transformer’s structural model has achieved great success in numerous
domains such as Natural Language Processing and Computer Vision, the struc-
ture has also been applied to recommender systems. Some representative exam-
ples are Kand and McAuley [13] and BERTRec [21]. The former introduced
a two-layer transformer decoder known as SASRec, designed to capture users’
sequential behaviors. This model was unidirectional and employed a causal atten-
tion mask. The latter used a deep bidirectional self-attention to model sequences
of user behavior.

We hypothesize that the approach used in sequence recommendation can
be applied in the context of proactive assistance. The key difference lies in
our emphasis on help actions rather than a general sequential recommenda-
tion, where all actions have equal importance. Additionally, transformer-based
approaches have shown effectiveness in capturing dependencies between sequence
elements.

3 Proposed Method

Motivated by the success of next-action prediction in sequence recommendation
systems, existing methods have excelled in modeling the correlations between
actions by considering an item as an action. Since we also work with sequences,
we propose that next-step help prediction can be transformed into a form of
next-action prediction. However, instead of considering all possible actions, we
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particularly focus on help actions. In the context of problem-solving, we hypoth-
esize that the number of actions is finite and propose a decoder-based model to
learn the inner relationships among these actions. Subsequently, we utilize the
probability of help actions at each time step to determine whether assistance is
needed in the current moment or not.

The general architecture we have applied has been imported from the Nat-
ural Language Processing field. In particular, similar to SASRec [13], we have
used a scaled-down version of GPT-2 [18] as the model’s structure. For simplic-
ity, we refer to the proposed model as Transformer4HELP. Transformer4HELP
comprises the integration of an embedding layer, stacked decoder blocks, and a
prediction layer, as described below.

Data Input. Students’ attempts to solve a problem in an ITS were recorded as a
sequence of actions Su = (Su

1 , Su
2 , ..., Su

|Su|). For training, we converted the input
sequence into a fixed-length input S = (s1, s2, ..., sN ), where N is the maximum
length of the model’s input. Padding was applied when the sequence length was
less than the model input length, filling the right-hand side of the sequence up
to N . When the sequence length was longer, the sequence was truncated by
eliminating the last actions.

Embedding Layer. We use embedding matrix AE ∈ R
|A|×d to encode student

actions into matrices, where |A| is all possible actions could have in the system,
and d represents the latent dimensionality. As the order of actions is essential,
positional embedding PE ∈ R

N×d is added to represent position information.
The information transferred into the next layer is defined as:

E = AE + PE (1)

Furthermore, we include the duration of each action as part of the embedding
representation.

Stacked Decoder Block. A stacked decoder block combines a masked self-
attention layer and a point-wise feed-forward network. Self-attention is computed
through Scaled Dot-Product Attention [22]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where query Q, key K, and value V are projected from the same matrix with
different learned projection matrices. The scale factor

√
dk is used to avoid

overly large values of the inner product. Self-attention allows capturing the
dependencies between representation pairs without regard to their distance in
the sequences. Masked self-attention is applied to mask actions that occur in
future time steps, to prevent information leakage during prediction. Following
attention sub-layer, a fully connected feed-forward network is applied to endow
non-linearity. This involves two linear transformations with a GELU action in
between. Moreover, to improve data representation, we applied multiple masked
self-attention operations (multi-head attention) in parallel and concatenated the
outputs, instead of using a single masked self-attention.
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FFN(x) = GELU(xW1 + b1)W2 + b2 (3)

where x is the output of previous attention sub-layer, W1 and W2 are d × d
matrices and b1, b2 are d-dimensional vectors.

Prediction Layer. After several stacked decoder blocks that adaptively and
hierarchically extract information about previous actions, a linear layer is used
to map information into an output matrix O ∈ R

N×|A|, and the softmax function
is used to convert the output to the predicted next action probabilities.

4 Experimental Setting

To evaluate the proposed method, we have used a large amount of data cap-
tured by using an Intelligent Tutoring System called HINTS (Hypergraph-based
Intelligent Tutoring System) [2,6], which was specifically designed to teach arith-
metic and algebraic word problem-solving. This ITS follows a typical workflow,
which unfolds as follows: a student initiates the problem-solving process, com-
municates their problem-solving steps to the system, receives feedback from the
system, and engages in alternating interactions until the problem is successfully
solved as depicted in Fig. 1.

Fig. 1. A simplified diagram illustrating user interaction in HINTS and training of
Transformer4HELP. At each time step, the model considers all prior system actions
and predicts the next action, with a particular focus on identifying actions related to
providing assistance.

The system classifies user action intentions and provides relevant feedback.
While there are two types of actions in this context (user actions and system
actions), the system actions are the ones that furnish crucial information about
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user actions. Consequently, we exclusively employ system actions as training
sequences. These sequences are fed into Transformer4HELP, which calculates
the probabilities of actions in the next time step. It is essential to underscore
that our ultimate evaluation criterion is not the specific next-step action, but
rather whether the next-step action provides assistance.

4.1 Dataset

The dataset was recorded as 222 students aged 10–13 in primary school solved
a variable number of arithmetic math problems in a HINTS version that sup-
ported on-demand help by pressing a button. The dataset recorded both user
actions and system feedback in session logs. Actions that students could perform
while solving a problem were defining a letter, defining a quantity by using other
quantities, writing an equation, interacting with the user interface, or requesting
help. The response to the first three actions was whether the action was cor-
rect, while a help request triggered a dialogue box suggesting a next step. This
allowed us to combine the user action and the system response under 14 differ-
ent actions, namely: clean equation box, clean expression box, correct equation,
incorrect equation, correct expression, incorrect expression, expression already
defined, expression operands error, wrong letter definition, correct letter defini-
tion, correct quantity, wrong quantity, help request and new problem. Using this
encoding, we produced a total of 2144 sequences with a total of 14939 actions,
after discarding sequences with less than 3 actions. 1602 of these actions were
help requests, which is around 10.7% of total actions.

4.2 Model Training

To train the model, we designed a custom loss function that combines two cross-
entropy terms: one to compute the overall loss among all actions and another
to specifically calculate the loss when determining whether the action is a help
request or not. The cross-entropy loss function is defined as follows:

L = −
∑

s∈S

∑

t∈[2,...,N ]

Ost · log(O′
st) (4)

where O′
st represent the predicted probability of action s in time step t and Ost is

the true probability distribution. Note that we ignore the term where the action
output is the action used for padding. In addition, we apply a factor λ to decide
the relative importance of the two losses. Thereby, the final loss is defined as:

Lfinal = Lall + λLhelp (5)

The AdamW optimizer with β1 = 0.9, β2 = 0.999 and weight decay of 0.01
were used for training. We set the initial learning rate to 0.0005 and the batch
size to 32, using a linear decay learning rate scheduler. We also implemented
an early stopping mechanism to mitigate the risk of overfitting and enhance
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the model’s generalization capability. Specifically, we configured the stopping
condition to halt training after 50 epochs if the validation loss does not improve.

We set the maximum sequence length N = 50, head number h = 1, trans-
former blocks L = 1, and embedding dimension d = 50. For hyperparameter
λ in Eq. 5, we set it to 10.0. We split the dataset into train, validation, and
test sets with a ratio of 6:2:2. All our experiments were conducted on a com-
puter equipped with a 13th generation i7 processor with 128 RAM and a single
NVIDIA RTX 3090 GPU with 24 GB of memory, running Ubuntu 20.04.4 LTS.
The required model implementations used Python 3.9 with version 2.0 of the
open-source Pytorch.

4.3 Evaluation Metric

Despite the model being trained to predict the next-step action, our evaluation
exclusively focuses on help prediction. We assume the action help has label 1
and the remainder with label 0. Since the model computes the probability of
all actions, we extract the probability of the action help in each time step. To
better judge the model’s ability to predict the need for help using a score, we
used the Area Under the Curve (AUC) as an evaluation metric of classification
performance. This metric AUC is calculated by aggregating the area under the
Receiver Operating Characteristic (ROC) curve. The bigger the area, the more
accurate the predictor. Formally, the formula for calculating AUC is defined as
follows: ∫ 1

0

f(x)dx (6)

where f(x) is the function of the ROC curve.
The ROC curve is a two-dimensional graphical representation utilized in

binary classification. On the vertical axis, the True Positive Rate (TPR), also
known as sensitivity, expresses the ratio of correctly classified positive samples
to the total number of positive. The horizontal axis represents the False Positive
Rate (FPR), referred to as 1-specificity, which signifies the proportion of correctly
classified negative samples out of the total negative samples. At each point along
the curve, its coordinates (fpr, tpr) are computed based on the actual class
labels of the samples and their predicted probabilities of being positive. A well-
performing classification model’s ROC curve exhibits a distinctive feature: as the
False Positive Rate decreases, the True Positive Rate simultaneously increases.
That is, the curve resides near the upper-left corner, signifying that the model
possesses a strong discriminative capability.

The ROC curve provides a way to visualize the trade-off between the true
positive rate and the true negative rate and is insensitive to the threshold used
for classification. This is particularly relevant in our concrete scenario, as set-
ting a low threshold would lead to an excessive level of assistance while a high
threshold would result in minimal support. This leaves the threshold decision as
an opportunity to fine-tune Transformer4HELP, adapting the level of assistance
provided to each user based on their preferences.
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5 Results and Discussion

5.1 Comparison to Other Methods

As there are limited existing methods in the current state of the art, we are
unable to conduct direct comparisons between Transformer4HELP and other
models. In order to assess the effectiveness of our proposed model, we have for-
mulated a straightforward help prediction policy. This baseline policy allows us
to establish a basis for comparison between the outcomes of the two approaches.

Mistake-Based Help Prediction Policy. Intuitively, students are more
inclined to seek help in their subsequent actions when they make mistakes while
solving a problem. Mistaken actions from the past can influence future behav-
iors, with a more pronounced effect when the time interval between the erro-
neous behavior and the subsequent moment is shorter, gradually diminishing as
the interval lengthens. Based on this idea, we developed a weighted function for
past actions and used it to determine the probability that the next-step action
would be a help request. The specific details are outlined as follows:

M(t) = e−a·t

MT (t) = flip(M(t))

output =
t∑

t=1

MT (t),where st = mistake action
(7)

We calculate the weight for each time step action using the function M(t), where
the variable a represents an increasing factor concerning time, and t denotes the
number of the current time step since the problem was initiated. Recognizing
the impact of actions over time is influenced by the proximity of time intervals,
we employ a “flip” function to order the weights from smallest to largest. The
ultimate output value is determined by aggregating all the weights associated
with actions taken at time steps related to mistakes. In this case, we set a = 0.5
and take into account this approach as a baseline to compare with.

Transformer4HELP. The proposed model uses single-head attention and a
causal attention mask for left-to-right unidirectional modeling. The goal is to
predict the next action for each position in a sequence. We take the probability
of help in each time step to compute the value of AUC.

Table 1. HELP prediction performance on our dataset across the training, validation,
and test sets. The best results are highlighted in bold.

Method train set AUC validation set AUC test set AUC

Baseline 0.61 0.42 0.52
Transformer4HELP 0.87 0.90 0.84
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ROC curves for training, validation, and test sets are illustrated in Fig. 2.
These curves provide insights into the model’s performance in predicting help
requirements. Corresponding AUC values are presented in Table 1 to assess the
overall model performance. These results clearly demonstrate the superior per-
formance of our proposed model, Transformer4HELP, compared to the baseline.
It is important to note that while students may be more inclined to seek help fol-
lowing frequent mistakes, this is not the sole determinant of performance; other
contributing factors can also influence the baseline’s performance.

In contrast, Transformer4HELP uses past actions to predict the next-step
action with remarkable results. The AUC scores of the model were 0.87, 0.90,
and 0.84 for the training, validation, and test sets, respectively. Compared to
the baseline, the performance of each group improved by 0.26, 0.48, and 0.32,
respectively.

Fig. 2. ROC curves in both approaches

5.2 Ablation Study

In this section, we describe three ablation experiments, addressed to assess the
contribution of the loss function, the addition of temporal information to the
model, and the model complexity.

With regard to the loss function, we have studied the model’s performance
when using cross entropy for all actions, binary cross entropy for help actions, and
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a mixture of both. Table 2 represents the model’s performance based on different
loss functions. In the evaluation of the model’s generalization performance on the
test set, the best performance was achieved by combining the two loss functions,
resulting in an improvement close to 0.1 in the AUC value.

Table 2. HELP prediction performance on our dataset across the training, validation,
and test sets with different loss functions using Transformer4HELP. The best results
are highlighted in bold.

Method train set AUC validation set AUC test set AUC

cross-entropy 0.83 0.88 0.73
binary cross entropy 0.79 0.85 0.75
combine two losses 0.87 0.90 0.84

The second experiment attempted to quantify the impact of including timing
information in the model. In Table 3, the method “Transformer4HELP-time fea-
ture” indicates that no timing information was incorporated into the sequence
embedding representation. These results support the addition of timing infor-
mation to enhance the model’s performance.

Table 3. HELP prediction performance on our dataset across the training, validation,
and test sets using Transformer4HELP with or without time interval information. The
best results are highlighted in bold.

Method train set AUC validation set AUC test set AUC

Transformer4HELP 0.87 0.90 0.84
Transformer4HELP-time feature 0.84 0.88 0.77

In our exploration of model complexity, we conducted experiments with vary-
ing numbers of heads and transformer blocks. Table 4 indicates that increasing
the number of heads or deepening the model does not yield improvements in
model performance.

Table 4. HELP prediction performance on our dataset across the training, validation,
and test sets using Transformer4HELP with different heads and transformer blocks.
The best results are highlighted in bold.

head transformer block train set AUC validation set AUC test set AUC

1 1 0.87 0.90 0.84
1 2 0.84 0.90 0.78
2 1 0.85 0.89 0.77
2 2 0.85 0.90 0.76
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6 Conclusion

In this work, we have presented a novel approach to capture student action rela-
tionships for proactive help prediction, addressing the assistance dilemma prob-
lem in intelligent tutoring systems. The proposed model, Transformer4HELP,
was built upon a transformer decoder-based architecture. It was designed to
model student actions and predict whether the next-step action would be a help
request, within the context of a concrete problem-solving scenario. We validated
the proposed model and the experimental results indicated the effectiveness,
achieving an AUC of 0.84 on the test set.

However, it is important to acknowledge the limitations of this study. One key
limitation is the relatively small dataset size we used for our analysis, particularly
regarding the scarcity of help action occurrences. When employing deep learning
techniques, having a larger dataset is often advantageous for model performance.
In addition, the dataset is constrained by its reliance on short-term session logs,
which prevents us from creating a user model for each student due to the lack
of user information. In real-world problem-solving scenarios, students’s person-
ality traits and knowledge acquisition patterns play a significant role in seeking
help behavior. Furthermore, due to the lack of publicly available datasets, the
proposed method has only been evaluated on one specific dataset. Therefore,
we are unable to conduct experiments to demonstrate the generalizability of the
method to other ITSs.

In future work, we plan to augment the dataset scale to enhance the model’s
fitting performance. To further improve the next-step help prediction, we would
like to develop user models to align more effectively with individual learning
processes. Furthermore, we plan to validate the effectiveness of this approach
in real-world scenarios, investigating the impact of a proactive help approach
on the student’s learning experience. In addition, we consider of special interest
the integration of the presented method with some of our recent research, aim-
ing at improving the results presented in this paper. In this direction, we shall
consider the possibility of combining the predictions offered by the proposed
transformer architecture with others coming from different modalities. These
modalities include affective information extracted by using physiological signals
[24], cameras [9,23] or text-based classification methods [4]; as well as student
success predictions computed using different techniques such as Item Response
Theory (IRT) [5]. We are especially interested in the potential impact of accurate
predictions of the need for assistance in educational settings, including students
with special needs [8].
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Abstract. The issue of generalizing and concentrating learning situa-
tion data in human learner interaction with ITS is described. The reso-
lution of this issue is important for making reasoned decisions that are
considered credible by a human learner. Various approaches to data con-
centration and visualization are considered, among which mapping has
a special place. Using the example of the Cognitive Maps of Knowledge
Diagnosis (CMKD) method, it is shown how data can be generalized by
concentrating them into parametric maps and then forming and visual-
izing a combined map. The algorithm of synthesizing the combined map
and the principle of its interpretation are given. An experiment with
master’s students who interpreted and evaluated ITS recommendations
accompanied by different types of maps in CMKD notation is described.
The data example of one of the master’s students studying the “Intel-
ligent Data Analysis” course shows the process of visualization of data
about the learning situation. The analysis of the experimental results
showed an increased effectiveness of ITS decision perception when using
the data from the combined map and visualizing its simplified fragment.

Keywords: Intelligent Tutoring Systems · cognitive visualization ·
decision making · Cognitive Maps of Knowledge Diagnosis · Combined
Map

1 Introduction

The decision-making mechanism in Intelligent Tutoring Systems (ITS) plays a
central role in the development of an intelligent solver (planner). Since the con-
trol object is a human learner, the complexity of the task of developing effective
decisions directly depends on the flexibility of describing and evaluating the
learning situation. Due to the variety of input parameters taken into account by
the planner, a simple sorting of their combinations in the form of rules is ineffi-
cient and leads to the need to propose other ways of organizing the processing of
knowledge bases in ITS. One of the approaches is a step-by-step concentration
of knowledge about the learning situation.
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The methods of the bottom-up approach, to which generative intelligence
based on artificial neural networks belongs, are very good for generalization, but
they do not allow obtaining explainable (reasoned) decisions. The use of XAI
methods [1] does not yet allow to reconstruct an acceptable quality of causal
relationships. In this regard, the main mechanism for realizing the logic of an
intelligent planner are mainly methods of the top-down artificial intelligence
(ontologies and recommendation/expert system [18,21]). But they also rely on
the mechanism of knowledge concentration when making decisions. One of the
trends in the development of modern ITS is the use of cognitive visualization
methods [10]. Our paper is devoted to describing the process of transition from
input data to explainable decisions, relying on the mechanism of mapping and
cognitive visualization.

2 Existing Solutions

The standard tools of data concentration in LMS (e.g., Moodle, Canvas, Black-
board, D2L Brightspace, etc.) or in developed AI-oriented tutoring systems
[3,12], start generalization by extracting data from the digital educational foot-
print, grouping them and generalizing them statistically (concentration). In
doing so, a number of problems arise related to evaluation of the learning situ-
ation as a complex object of consideration. These problems are mainly related
to the necessity of:

1. considering the heterogeneous nature of the data (overcoming the difficulty of
simultaneously describing structural, functional, target and operational data
about the object of visualization);

2. considering the dynamics of indicators (overcoming the temporal variability
and generalization of frequency properties);

3. considering different points of view (overcoming differences in subjective
emphasis and personal targets in the evaluation of the learning situation);

4. considering different aspects of analysis (overcoming the heterogeneity of the
interpretation of the situation with respect to multiple key properties);

5. considering various decisions (overcoming the difficulty of choosing one of the
alternatives or synthesizing a compromise decision);

6. considering the specifics of the subjective perception of the recipient of the
answer (overcoming the difficulty of setting accents in the argumentation
when presenting the ITS decision to a person).

Most ITS decisions are oriented to the solution of the task of control, i.e. to
the development of pedagogical action adequate to the situation. It is important
to get an answer to the following question: how to motivate a human learner to
choose a proper action in the educational environment, which will lead to “the
best” results (achievement of educational goals) as predicted by the system?
At the same time, any decision should be explained to the person in natural
language or other form, if he/she doubts the adequacy of the work of intelligent
algorithms.
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ITS developers implement the following items as methods of summarizing
information from the learner model and digital footprint to assess the learning
situation:

– averaging based on statistical and probabilistic approaches (e.g., [2]);
– classification based on a typical behavioral model (pre-identified patterns and

clusters [17]);
– recognition of the situation by neural network models [13];
– calculation of the model of the subject area in the form of an ontology [7];
– calculation of rule collections from knowledge bases of recommender systems

[18];
– integrated visualization of the learning environment and learner model [25].

As was shown in [10,19], graphic tools are a powerful trend for explaining
decisions. The methods of cognitive visualization are of the greatest interest
as they have the greatest potential for data concentration. Let us compare the
possibilities of knowledge concentration (convolution) in relation to the six prob-
lematic aspects of analyzing a learning situation given above (see Table 1).

Table 1. Possibilities for interpreting different aspects of analyzing a learning situation
with ITS graphic tools

Basic technologies Example 1 2 3 4 5 6

Kohonen Self-Organizing Maps (SOM) [16] – – – – – –

Clustering methods [9] – – – – – –

Ontologies and semantic networks [8] V ∼V V V ∼V ∼V

OLAP [5] ∼V – – V – –

Chernoff faces [4] ∼V – – ∼V – –

UGVA method [24] V V – ∼V – –

Pictograph boards (dashboards) [6] ∼V ∼V – – – –

Cognitive maps [14,25] ∼V ∼V ∼V – – ∼V

As can be seen from Table 1, it is problematic to take advantage of all gener-
alization possibilities using a single data processing mechanism in ITS without
forming a detailed ontology of the subject area. This approach is extremely time-
consuming and complex [8]. In addition, there are also the following peculiarities
of generalization: clear steps, combination of different types of uncertainty, the
need for interpretability of the image and its interactivity. Therefore, let us con-
sider the development of the method of cognitive maps. Let us use the method of
cognitive maps of knowledge diagnosis (CMKD) to solve this task. The purpose
of this paper is to demonstrate how parametric maps and the CMKD method
(via combined maps) can increase the level of student confidence in ITS assess-
ment of the learning situation. For this purpose, in Sect. 3 we will describe the
principle of synthesizing a parametric map and converting it into a combined
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map, as well as the rules for interpreting it during operation of the ITS planner.
In Sect. 4 we will describe the experiment with the master’s students and in
Sect. 5 we will give the results of the experiment and summarize the experience
gained.

3 Method

3.1 Methodological Approach to Data Generalization

The mechanism of concentration of the data collected in the digital educational
footprint by ITS mechanisms involves a step-by-step generalization from a com-
mon substrate of parameters and sets of their values to the formation of a com-
plete decision of the tutoring system and informing about it the human learner.
For this purpose, the input data are transformed according to the following
sequence of steps:

1. extraction of digital educational footprint data from ITS logs and their statis-
tical generalization for each parameter (averaging and determining the direc-
tion of change - operating with single values);

2. translation of each generalized parameter to its qualitative assessment (fuzzi-
fication operation based on the fuzzy logic method [26]);

3. independent expert evaluation of various aspects of the object/process under
consideration, represented by vectors of qualitative assessments, concerning
key aspects of analysis and models, the logic of which is simulated by ITS
(e.g. particular models of student, teacher and subject tutor);

4. formation of a compromise alternative at the intersection of particular deci-
sions and preparation of a set of arguments justifying this decision (corre-
sponds to the stage of logical concentration according to [21]);

5. identification of 1–2 key arguments from the set of justifying arguments, their
display in the logic of internal targets of the student in order to accelerate
the perception of the recommendations of the tutoring system (increasing the
effectiveness of the pedagogical impact and increasing the credibility of ITS
decisions).

These steps are schematically shown in Fig. 1 and conditionally correspond to
overcoming six problems related to analyzing complex objects/situations, which
were listed in Sect. 2. It is problematic to operate with a set of data in steps 3–5,
without involvement of special structures. Therefore, we will use the mapping
mechanism to solve this problem.

3.2 CMKD Method

Mapping, as a data concentration method, is widely used when there is a need
for complex representation of complex objects. The term “cognitive map” was
introduced to describe cognitive functions of the brain in the works on neuro-
physiology by E. Tolman [20]. Let us consider one of the mapping methods called
Cognitive Map of Knowledge Diagnosis (CMKD).
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Step 1
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Fig. 1. Scheme of step-by-step generalization of data in the implementation of the ITS
decision-making process

CMKD is a mapping method that provides a compact representation (visual-
ization) of semiotic structures (syntactic, semantic, and pragmatic data) applied
to the diagnosis of an instance of an object/process in order to improve the
quality of making decisions and their reasoning. This method reflects the con-
cept of applied semiotics [15] and can be adapted to different subject areas. For
example, in [25] it is used to visualize the learning situation when working with
ITS. Developing this idea, it should be noted that CMKD map can be displayed
in different modes:

1. basic map (M1) reflecting invariant basic structures (excluding pragmatic
and denotation data);

2. personalized map (M2) reflecting the object in relation to a specific pragmatic
approach (excluding only denotation data);

3. particular map (M3) reflecting the object in relation to a particular aspect
of analysis and point of view;

4. combined map (M4) reflecting the combination of particular maps (an atlas)
and emphasizing the most significant elements from different maps (e.g.,
reflecting only problematic points in different aspects and points of view);

5. simplified particular map (M5) reflecting the central tendency/accent and
excluding everything else (as a rule, on the basis of one particular map which
is the most suitable for argumentation of decisions).
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In analytical systems, where the CMKD notation is implemented for the
purpose of demonstration to the user, it is provided by mechanisms of interactive
interaction: it is possible to move between maps at the initiative of a person, as
well as to refer to the objects associated with its elements.

For ITS, the role of each map is indicated by corresponding designation in
Fig. 1. Examples of each of these maps are shown in Fig. 2. The letter u on the
maps denotes didactic units of the course and the letter t denotes topics of the
course. While the use of maps 1, 2, 3 and 5 in implementing ITS logic is well
enough described in [25], the combined map should be considered in more detail.

ba

dc

Fig. 2. Examples of basic (M1, a), personalized (M2, b), particular (M3, c) and sim-
plified particular (M5, d) CMKD maps describing different states of learning situation
analysis on the example of the learning process in the “Intelligent Data Analysis” (IDA)
course based on ITS
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3.3 Combined Map as an Element of ITS Operation Logic

As mentioned above, the combined map of knowledge diagnosis (M4) in ITS is
intended to perform a metric concentration of data on problems identified as a
result of the diagnosis of the current learning situation. To synthesize it, it will
be necessary to have particular maps from the atlas generated for all models and
aspects of analysis (M3) simulated by the system. Each of these particular maps
has not only structural elements (syntactics) in the combined map, but also a
set of semantic links among themselves (semantics) and with other entities (e.g.,
targets, competencies, and tasks corresponding to pragmatics). The process of
synthesizing a combined map can be conditionally represented as the following
algorithm in pseudocode (see Algorithm 1).

Algorithm 1. Enlarged steps for synthesizing a combined map
1: Form a common pool of objects W of the structure (didactic units u), tasks, targets

and competencies with a through index i
2: Load particular maps M3 with through index j from the atlas
3: for j do
4: if (the element i is present in the map M3j) and (an estimate of the negative

contribution θi (*) > of the threshold value αi) then
5: Include the object wi as m4k in M4, as well as those entities from W that

had semantic links with the problematic element
6: if wi was previously included in M4 then
7: Increase the significance level βk of the object m4k and corresponding

problematic links
8: end if
9: end if

10: end for
11: Group the elements M4 by object type
12: Estimate the average value βk (denote the result by βW ) with respect to the whole

M4 taking into account the weights of semantic links (*)
13: for k do
14: if βk < (βW /2) then
15: Exclude m4k from M4 as having little influence on decision making in the

context of the entire learning situation
16: end if
17: end for
18: if the map to be visualized for user then
19: for k do
20: Modify each block (shape, lettering, line style, etc.) to display the most

important parameters (e.g., value trends)
21: Color coding of each block according to the selected color scale reflecting

the degree of “problem”
22: end for
23: end if

Symbol (*) in the algorithm denotes operations that are performed using an
additional mechanism of expert systems. The result of this algorithm is that
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a set of significant entities and the links between them are built in the form
of a single structure, reflecting the reconstruction of the student’s state (in the
opinion of ITS) at the current moment in time and in relation to a particular
decision-making task. An example visualization of a combined map in CMKD
notation is shown in Fig. 3. Here in block S competencies from the curriculum
are grouped and block Ψ includes target preferences.

Fig. 3. Example of the combined map in CMKD notation

Interpretation of the combined map is that an intelligent solver (in case the
map is processed by ITS) or a decision maker (in case the map is demonstrated to
a person) has a possibility to simultaneously cover the most significant structural
elements of the analyzed object/process, their links between each other, values
of indicators characterizing them and target settings.

In the process of implementing the ITS operation logic, the combined map
becomes the basis for the majority of decisions, because it concentrates the most
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significant indicators and displays semantics of links between objects. If we rely
on the idea that different models simulated by the tutoring system have their own
fragments of the knowledge base, their interaction through the analysis of the
combined map allows us to implement the strategy of working out compromise
decisions by the blackboard mechanism [11].

4 Experiment

The experiment on the use of CMKD in organizing the work of the experimental
ITS AESU was conducted by us at the end of 2023 on a group of master’s
students (9 people) of the specialty “Informatics and Computer Science” at
Siberian Federal University. The following research hypothesis was put forward:
graphic support of ITS recommendations about problems in the current learning
situation will be faster to be understood and accepted for execution by a student
if the arguments are concentrated on the cognitive maps of knowledge diagnosis
with the possibility of interactive interaction.

For all courses of the first academic term, data on their structure, semantics,
and priorities of the teacher model were formalized. Students took entrance
and intermediate tests in each course, as well as indicated their priorities by
answering questionnaires. In particular, through the questionnaires each student
noted the priority didactic units of the course, the most important goals of the
course, and the priority competencies to be developed. All answers were recorded
in the learner model and taken into account when forming the individual course
composition and educational trajectory.

The results of individual work with the learning material were used to record
the digital educational footprint, assess the level of mastery of didactic material
(knowledge aspect) and the level of development of each of the 8 competencies
measured by ITS. The approach we used to assess the competencies is described
in detail in [23].

Within a particular course, the intelligent planner formed a recommendation
to work with the learning material in a natural language form, which could be
supplemented by one of the types of maps. The maps were implemented as an
interactive graphic block, allowing to get extended data about each depicted
element, when the student hovered over or highlighted it.

For a particular learning situation, the student was given a textual recom-
mendation to repeat the learning material (repetition) and the reasons for the
system to include it in the recommendation. It was synthesized on the basis
of a combined map. The first stage of the experiment included only the text
recommendation. In the second stage, the student was presented with a recom-
mendation for a different learning situation, but accompanied with a particular
map (the reasons and the main emphasis on repetition were also indicated) with-
out the possibility of changing the aspect of consideration (the most meaningful
aspect was automatically selected). In the third stage, the map was shown with
the possibility of switching aspects by the student. In the final (fourth) stage, a
simplified map was presented. At each stage, the degree of usefulness, compre-
hensibility and credibility of the recommendation text was clarified. In addition,
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the time of studying the text part of the answer, the map and answers to accom-
panying questions was recorded.

Let us describe an example of a learning situation for one of the students for
the course “Intelligent Data Analysis” (IDA, its basic and personalized CMKD
are shown in Fig. 2a-b). At a certain moment of its study an atlas of particular
maps was formed (an example of such a map is shown in Fig. 2c, reflecting
the competency aspect for the competency uk1 “Can critically analyze problem
situations on the basis of a systematic approach”). The analysis of the map
allows us to identify “problematic” didactic units u2 and u27, which should be
repeated first of all. But the presence of semantic links within the course shows
that this competency depends significantly on the knowledge of u1.

After the formation of the combined map, which was shown in Fig. 3, the
following peculiarities of the learning situation can be noted:

– the didactic unit u1 creates “problems” not only for u11, but also for u2, but
also for u7 in the knowledge aspect and in relation to competency uk1;

– there is a dependency in the neighboring course “Software implementation of
mathematical models” in Python (u27), which creates additional difficulties
in the overall learning process;

– the influence of u2 and u5 on the mastery of the learner’s priority course
objective ψ6 is recorded.

This not only shifts the focus of the recommendation from u7 and u31 to
u2 and u27, but also gives a “personal” coloring to the arguments presented to
explain the recommendation.

Obviously, the display of a combined map in the process of the dialog explain-
ing the recommendations would be unnecessary. Therefore, the competency
aspect uk1 was emphasized during the simplification process, and the map was
simplified to the form shown in Fig. 2d. More details about the process of syn-
thesizing a dialog accompanied by maps can be found in [22].

5 Results and their Analysis

In the course of the experiment, 480 evidences were recorded from 25 question-
naires and tests of the learning process. In the process of analyzing the learning
situation according to the experiment described above, an additional 218 evi-
dences were obtained from each student. A summary of the data for the group
of master’s students is presented in (see Table 2).

In 86% of cases, the key reason for trusting a recommendation supported by
a simplified map was the personalized reference to personal learning goals. This
indicates that combined maps are effective in identifying emphases in the data,
but it is unnecessary to demonstrate them to students. This indicates that com-
bined maps are effective at identifying emphases in the data, but they are too
complicated to be demonstrated to students. We were surprised to see that the
particular map with the option to select an aspect of the analysis M3 received
the best response from students: it was preferred to the simplified map in 89%
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Table 2. Experiment results

Stage number and map type Average number of
clicks on the map

Average number of
aspect changes,
times

Average time to
assess the
situation, min.

Average level of
trust (a Likert
scale)

1. No map – – 2:13 It’s difficult

2. M3 with a major aspect – 8 2:16 I’m more likely to
trust

3. M3 when changing aspect 14.3 7.3 2:18 I’m more likely to
trust

4. M5 8.3 5.1 1:53 I’m more likely to
trust

of cases and to the recommendation text alone in 100% of cases. When evalu-
ating 100% of learning situations, it was noted that it is desirable to allow the
student to learn the algorithms, rules and guidelines for obtaining quantitative
and qualitative grades from the text of the recommendation demonstrated by
the ITS. In general, it can be stated that the hypothesis of the study was con-
firmed: students not only tend to trust (accept) recommendations with maps
more often, but also consciously record a personal need in the expected result
of the educational work.

The difficulties we had to face in conducting the experiment were the follow-
ing: first, the need to formalize the data for all courses in a standard form (not all
teachers appreciated the detailed description of their course models); second, the
interpretation of the map in the second stage of the experiment took a long time
because the students had to become familiar with the CMKD notation (when
the experiment is repeated, the speed of interpretation will be higher); third, the
experimental group was not large. For these reasons, we consider the results to
be preliminary and in need of a larger-scale experiment. Perhaps demonstration
of the combined map to the students is unnecessary.

The use of the mapping method, and in particular of combined maps in
CMKD notation, allows not only to automate the decision-making process, but
also to form a system of arguments by the method from [22]. This is in line with
the general approach to using explainable artificial intelligence in ITS [12]. A
more flexible approach can only be implemented by using an ontological descrip-
tion of the subject area. But this will specify the work of the whole ITS for a
particular course and will be incommensurably more labor-intensive than the
use of CMKD.

6 Conclusion

The combined maps play an important role in ITS operation, i.e. the concen-
tration of knowledge about the problems of the learning situation. But this is
only a part of the cross-cutting analysis [25], which is aimed at improving the
quality of personalization of the learning process and increasing the student’s
confidence in ITS decisions. Although the experimental data we have obtained
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are only preliminary, we can evaluate them as positive and will continue our
work in this direction.

The scalability of the proposed approach to analyzing the learning situation
using the mapping mechanism was verified by us on several groups of students
of different technical degrees. If the course description in ITS and the formation
of evaluation and test materials are correct, as well as data on the student’s
personal preferences are sufficient, the algorithm of knowledge concentration in
the form of a combined map and its automatic analysis provide a meaningful
argumentative dialog guided by a student.

Our current research directions in the field of ITS operation logic imple-
mentation are combination of CMKD method with other methods of cognitive
visualization (in particular, with UGVA method [24]); exploring the possibil-
ity of multi-agent implementation of interaction between teacher, student and
subject tutor models on the basis of combined maps; as well as organization
and carrying out of complex experiment in the educational process in Siberian
Federal University.

References

1. Baker, R.S.: Stupid tutoring systems, intelligent humans. Int. J. Artif. Intell. Educ.
26, 600–614 (2016)

2. Birnbaum, A.: Some latent trait models and their use in inferring an examinee’s
ability. Statistical theories of mental test scores (1968)

3. Brusilovsky, P.: AI in education, learner control, and human-AI collaboration. Int.
J. Artif. Intell. Educ. 33(1560–4306), 15 (2023). https://doi.org/10.1007/s40593-
023-00356-z

4. Chernoff, H.: The use of faces to represent points in K-dimensional space graphi-
cally. J. Am. Stat. Assoc. 68(342), 361–368 (1973)

5. Djedaini, M., Drushku, K., Labroche, N., Marcel, P., Peralta, V., Verdeaux, W.:
Automatic assessment of interactive OLAP explorations. Inf. Syst. 82, 148–163
(2019)

6. Few, S.: Information Dashboard Design: The Effective Visual Communication of
Data. O’Reilly Media, Inc., Sebastopol (2006)

7. Gavrilova, T.A., Kokoulina, L.: Using ontology engineering to design an artificial
intelligence course. In: Uskov, V.L., Howlett, R.J., Jain, L.C. (eds.) Smart Educa-
tion and e-Learning 2019. SIST, vol. 144, pp. 201–207. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-8260-4 19

8. Gavrilova, T., Kuznetsova, A., Lesheva, I.: On the issue of the development of
ontologies of scientific and academic work. In: XXI National Conference of Arti-
ficial Intelligence, vol. 1, pp. 60—67. Print-Express, Smolensk, Russia (2023). (in
Russian)

9. Gorban, A.N., Zinovyev, A.: Fast and user-friendly non-linear principal manifold
learning by method of elastic maps. In: 2015 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), pp. 1–9. IEEE (2015)

10. Ilves, K., Leinonen, J., Hellas, A.: Supporting self-regulated learning with visual-
izations in online learning environments. In: Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education, pp. 257—262. Association for
Computing Machinery, New York (2018)

https://doi.org/10.1007/s40593-023-00356-z
https://doi.org/10.1007/s40593-023-00356-z
https://doi.org/10.1007/978-981-13-8260-4_19


Combined Maps as a Tool of Concentrating Knowledge in ITS 39

11. Jackson, P.: Introduction to Expert Systems. Addison-Wesley Pub. Co., Reading
(1999)

12. Khosravi, H., et al.: Explainable artificial intelligence in education. Comput. Educ.
Artif. Intell. 3, 100074 (2022). https://doi.org/10.1016/j.caeai.2022.100074

13. Pan, T., Feng, G., Liu, X., Wu, W.: Using feature interaction for mining learners’
hidden information in MOOC dropout prediction. In: Frasson, C., Mylonas, P.,
Troussas, C. (eds.) ITS 2023. LNCS, vol. 13891, pp. 507–517. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-32883-1 45

14. Peer, M., Brunec, I.K., Newcombe, N.S., Epstein, R.A.: Structuring knowledge
with cognitive maps and cognitive graphs. Trends Cogn. Sci. 25(1), 37–54 (2021)

15. Pospelov, D., Osipov, G.: Applied semiotics. News Artif. Intell. 1, 9–35 (1999). (in
Russian)

16. Qian, J., et al.: Introducing self-organized maps (SOM) as a visualization tool for
materials research and education. Results Mater. 4, 100020 (2019)

17. Roux, L., Nodenot, T., Etcheverry, P., Dagorret, P., Marquesuzaa, C., Lopistéguy,
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Abstract. Identifying and addressing areas of weakness of online learning stu-
dents early on is critically important to prevent minor issues from becoming major
obstacles to their success. It is desirable to have a tool that allows learners to con-
duct personalized formative assessment on demand anytime during their course
study. To minimize the cognitive load of a learner and facilitate the iterative learn-
ing process, a pedagogical strategy is to identify a singular weak skill each forma-
tive assessment and to provide adaptive feedback for remediation for the learner
to close the gap between his/her current performance and the expected mastery
criteria. As one gap closes, another gap may be identified afterward, renewing the
formative assessment and feedback loop. For such singular weakness identifica-
tion, minimizing the time spent or the number of questions on each assessment is
crucial for maintaining learner engagement. On the other hand, it is also critical to
ensure that the result of the assessment is reliable to provide effective feedback. To
balance the accuracy and efficiency of the assessment,we propose three algorithms
for fast and adaptive weakness identification based on the good arm identification
(GAI) problem in multi-armed bandit-based machine learning. We evaluate the
sensitivity and performance of the proposed algorithms through simulation.

Keywords: Adaptive Learning · Formative Assessment · Multi-armed Bandits ·
Simulated Learners · Knowledge Tracing · Knowledge Components

1 Introduction

Formative assessments are essential in the educational process, as they provide timely
opportunities for students to close the gap between their current performance and the
expected criteria. By identifying and addressing areas of weakness early on, students can
prevent minor issues from becoming major obstacles to their success. However, most
existing research for conducting formative assessment is for classroom-based educa-
tional environments, in which the most efficient way of gathering evidence about stu-
dent weaknesses and taking actions for improvement is face-to-face interaction between
teachers and students [1]. In online education, especially asynchronous online learning
(AOL) or Self-directed learning (SDL), such face-to-face discussions are infeasible. In
AOL, feedback on curriculum-embedded assignments, quizzes, and projects may not
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be as immediate as in traditional classroom settings. The delay in receiving feedback
can hinder the learning process, as students may move on to new topics without fully
understanding or correcting mistakes from previous lessons. Also, providing personal-
ized feedback to each student can be challenging for instructors, especially in courses
with many participants. In SDL, self-assessment is common, and external feedback is
limited unless the learner seeks it out from peers, mentors, or through other means. In
adaptive learning systems (ALS), it is pivotal to generate immediate feedback and for-
mative assessments that are integrated into the learning path, using these inputs to adjust
the learning experience in real time.

Thus, automated formative assessment and feedback mechanisms are desirable for
online learning. However, to be helpful, they should address specific student needs or
misunderstandings as effectively as personalized, instructor-led feedback. Gareis (2007)
specifies two criteria to ensure formative assessment is beneficial for the student [2]. First,
it must convey the student’s progress in learning the material. Second, it must specify
steps to continue learning. Therefore, by identifying a student’s learning weaknesses and
strengths, formative assessments can help identify the next steps the student should take
in their learning path. Furthermore, to be maximally beneficial, formative assessments
should bemade available anytime and on-demand during a course. Tomake this possible,
formative assessments can be administered using intelligent tutoring systems.

Intelligent tutoring systems can generate automated feedback that reduces discrep-
ancies between current and desired performance. To generate effective feedback, it is
crucial to focus on how well the task is being performed [3]. Given a set of knowledge
components (KCs) (or learning objectives or skills), formative assessment is performed
by asking a set of questions to the learners and analyzing the responses of the learner.
Depending on the pedagogical strategy the teacher prefers, a formative assessment can
terminate once one or several “weak” or “un-mastered” KCs or the weakest KCs are
detected, and the remediation feedback can be generated by further investigating about
the foremost weak KCs using the chain of weakness [4].

In formative assessment, minimizing the time spent or the number of questions on
each formative assessment is crucial for maintaining engagement [5], reducing cogni-
tive load, providing timely and frequent feedback, encouraging reflection, supporting
personalized learning, enhancing motivation, and ensuring efficient use of time. These
elements collectively contribute to a more effective and engaging learning experience.
On the other hand, it is also critical to ensure that formative assessment is reliable to gen-
erate feedback. Therefore, there is a need for balancing the accuracy and efficiency of the
assessment. To meet this need, in this paper, we model a formative assessment process
as a good arm identification (GAI) problem in machine learning [6] and propose three
fast and adaptive weakness identification algorithms. The sensitivity and performance
of the proposed algorithms is verified by simulation.

The rest of the paper is organized as follows. Related work is reviewed in Sect. 2.
Section 3 formulates the weakness identification problem and the proposed algorithms
to solve the problem. Next, our simulation setup, experimental results and discussions
are presented in Sect. 4. Finally, we conclude the paper and point out future research
directions in Sect. 5.
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2 Related Work

Our approach for adaptive feedback generation is involved with knowledge tracing in
intelligent tutoring systems, and bandit algorithms in machine learning. Efficiently iden-
tifying the exact learning items that would prove most useful to a student’s study can
be classified as a Knowledge Tracing (KT) problem. KT research has been studied in
similar intelligent tutoring systems under a broad range of methods to effectively track
the learning progress of a student [7]. These models rely on dynamically updating stu-
dent knowledge states based on their responses to provide personalized feedback and
adaptivity, which may not be as relevant in scenarios in formative assessment where
student mastery does not evolve.

Several innovative approaches to adaptive testing have been developed to quickly
identify students’weaknesses.Kingsbury andHouser (2008) introduced ICAT:AnAdap-
tiveTestingProcedure,which is designed to efficiently identify students’ areas of strength
and weakness compared to traditional adaptive testing methods [8]. Yigit, Sorrel, and
de la Torre (2018) discuss using the Jensen–Shannon divergence index in CD-CAT
to improve attribute classification accuracy with very short test lengths, allowing for
quick identification of students’ weaknesses [9]. These approaches represent a signifi-
cant advancement in adaptive testing, offering more personalized, efficient, and accurate
methods for identifying and addressing students’ weaknesses. However, their algorithms
can be enhanced to better handle uncertainty in student responses. In this research, we
use techniques frommachine learning to deal with ambiguities in student data and make
more nuanced inferences about their knowledge states.

Multi-armed bandits are a reinforcement learning mechanism that traditionally aims
to maximize the attained reward from a set of items with varying, unknown reward
distributions [10]. The rewards of these items, referred to as arms, can be probability
distributions. The arms, in our context, refer to the KCs in a domain and the rewards
of the arms mean the proficiencies or knowledge states of a learner. One heuristic for
choosing arms that addresses the exploration-exploitation dilemma in the multi-armed
bandit problem is Thompson Sampling [10], which may use beta distributions to char-
acterize the state of each arm. The beta distribution is handy for representing knowledge
about probabilities [11]. Our model adopts Beta distributions to maintain empirical
observations.

Kano et al. consider a novel stochastic multi-armed bandit problem called good
arm identification (GAI) [6], where a good arm is defined as an arm with expected
reward greater than or equal to a given threshold. They proposed an algorithm to
solve the exploration-exploitation dilemma of confidence that GAI faces. In the con-
text of weakness identification through adaptive assessment, the standard bandit model
of exploration-exploitation does not accurately apply as we are only concerned with
the identification of a weak arm rather than best arm identification as best arm iden-
tification is much more time-consuming [4, 6]. Therefore, in this paper we model our
problem as good-arm identification modified to identify weak arms. This approach is
purely explorative in nature and aims to quickly identify any such arm(s) less than a
specified threshold.
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Another multi-armed bandit framework relevant to our case is multi-armed bandits
with correlated arms proposed by Gupta et al. [12]. We use it to model dependency
among knowledge components or learning objectives. As such, our algorithm borrows
ideas developed for correlated arms such as the concept of pseudo-rewards: sampling arm
k may generate reward r1 for itself, but similar, correlated rewards r2 may be associated
with correlated arm l [12].

3 Problem Formulation

The goal of formative assessment is to identify and close the gap between the status
of student learning and the desired learning objective. Placing appropriate demands on
learnerswith the ZPD assists them to close the gap. As one gap closes, new learning goals
are identified or another gap is identified, renewing the formative assessment feedback
loop [1]. Figure 1 shows the process of iteratively generating feedback about remediation
action, in which a singular weak skill each formative assessment is identified.

Fig. 1. The process of iteratively generating feedback about remediation action, in which a
singular weak skill each formative assessment is identified.

3.1 Domain Model

The goal of our research is to allow educators and students to efficiently identify their
critical weaknesses in a particular subject. The set of all topics that the subject con-
sists of and their relationships to each other can be described by a domain model. The
domain model consists of a set of knowledge components or learning objectives, here-
after referred to as KCs, modelled as a graph-like structure where the nodes represent
the KC, and the edges represent the dependencies between them. We can use the depen-
dencies of the KCs to our advantage; i.e., if a KC is dependent on another, we can
extract information from both simply by sampling either one. Using this KC structure,
we can approach the problem of identifying weak KCs as a multi-armed bandit “good
arm identification” problem.
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3.2 Student Model

To provide appropriate question sequencing, a student model of the learners’ abilities is
needed. For a student s learningwithin a domain consisting ofK knowledge components:
each knowledge component i ∈ {1, 2, . . . ,K} is associated with their mastery in i. This
mastery level represents the skill level of student s in KC i. In our Beta-Bernoulli MAB,
a student’s abilities, and history in KC i are modelled as a beta distribution with shape
parameters (αi, βi) and values (μi, σ 2

i ). The student’s mastery of KC i is represented by
the mean, μi, of this distribution. Therefore, the mean represents the probability that the
student will respond correctly to a question from KC i. The shape parameters represent
the number of questions the student has answered correctly, αi, and incorrectly, βi, for
KC i.

3.3 Transition Model

The transition model in an adaptive learning systemmaps an individual learner and their
current knowledge state to their next logical knowledge state. In adaptive formative
assessment, an instructor can specify the following parameters: mastery threshold and
confidence level, or error rate. To define what makes an arm weak, we instate a mastery
threshold ξ as a hyperparameter. More generally, the instructor can specify a mastery
threshold denoted as ξi for each KC or arm i. If our empirical mean reward μi for arm i
is below ξi, that is, μi < ξi, we can define it as weak.

3.4 Bandit Model

The standard MAB model cannot be directly used to model the weakness identification
problem in formative assessment since we are simply interested in the identification of
a weak arm, not the exploitation of rewards. Also, even though identifying the weakest
skill or KC would be ideal, identifying the best arm requires drawing many arms. In our
problem, the arms of the MAB are represented by KCs. A bad arm is also called a weak
arm or a weak KC. The system sequentially chooses KCs, selects questions from those
KCs, and observes independent noisy responses to the questions by the student. If the
student answers a question correctly, the corresponding arm, or KC, gets a reward. This
means updating the student model’s beta distribution parameters for that KC based on
the correctness of the answer. The goal for the MAB is to select questions so that a weak
KC for the student can be identified confidently with as few questions as possible.

Sampling Policies. We call the procedure of choosing the next arm to pull the sampling
policy of the MAB. The sampling policy is responsible for determining the next arm
to pull to minimize the number of questions to ask a student. To do this we want the
sampling policy to find the current estimated weak KC so that we can find an actual
weak KC quicker. This is central to the bad, or weak, arm identification problem.
In this paper we explore three alternative sampling policies: High Degree of Confi-
dence (HDoC), Thompson, and Random. The HDoC policy is modified from the HDoC
algorithm introduced by Kano et al. [6]. The following function determines the score,
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∼
μi(t), of KC i for round t:

μ̃i(t) = μ̂i(t) +
√

log t

2Ni(t)
(1)

Where Ni(t) is the number of times KC i has been sampled as of round t and μ
∧

i(t) is the
empirical mean of the KC at round t. The arm with the lowest score is sampled so that
if it is weak, it can be identified quickly.

The Thompson sampling policy we implement follows the traditional Thompson
sampling algorithm for MABs [10]. During each sampling round, the beta distributions
of each arm are sampled and the arm with the lowest sampled value is pulled. This arm
is likely to have the highest probability of being weak, i.e. the lowest mean value. The
random sampling policy naïvely selects a random arm and pulls it. It gives no preference
based on the beta distributions of the arms.

Updating Empirical Means. After a question from a KC is presented to the student
and after the student provides a response, the student model is updated based on the
reward provided. This means updating the student model’s beta distribution for the KC.
Following our usage of beta distributions, the most practical way to update the empirical
mean of each distribution to their respective posterior distribution is to update the α and
β values. A correct answer yields updated parameters (α + 1, β), whereas an incorrect
answer yield (α, β + 1) [11].

Stopping Criterion. For the MAB to terminate the question asking process, one of
the stopping criteria must be met. All three algorithms will stop when there are no
arms available to pull or when a weak arm is found. Arms are removed when they are
determined to be strong. However, each algorithm implements a different procedure for
determining whether an arm is weak or strong after a reward has been received. For the
HDoC sampling policy we use the idea of score, like that used in the sampling policy
and described by Kano et al. [6]. For any arm with distribution Beta(α, β) we have the
following confidence bound scores μi(t) and :

μi(t) = μ
∧

i(t) +
√√√√ log(

4KN 2
i (t)
δ

)

2N 2
i (t)

(2)

(3)

Whereμ
∧

i(t) is the empirical mean of the beta distribution for arm i at round t,Ni(t) is the
number of times arm i is sampled at round t, and δ is our accepted error rate, adjusted as
a hyperparameter. This scoring function will be used to determine if we have collected
sufficient samples from a particular arm i to justify outputting i as weak.

For the Thompson algorithm, we employ the standard cumulative distribution func-
tion (CDF) and error rate δ to determine whether the mean of an arm i is greater than
ξ within a degree of confidence. For the random algorithm we naively classify an arm
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as weak if the mean of its beta distribution is less than ξ. Otherwise, we classify it
as strong. The random algorithm does not have a well-defined measure of confidence
about whether an arm is weak or strong. This makes it a good candidate to compare to
for algorithms that do.

Pseudo-Rewards. To take advantage of the KC mapping and dependencies we imple-
ment the idea of pseudo-rewards. Correlated bandit problems have already implemented
variations of this concept [12]. In these problems, arms that are highly correlated or
dependent on one another allow information from both arms to be attained by sampling
merely one. For example, given dependent KC i1 and i2, a correct answer of arm i1
allows us to update (αi1 ← αi1 + 1, βi1 ← βi1 ) and (αi2 ← αi2 + 1

c , βi2 ← βi2 ),
where c is the pseudo-reward factor. In our experiments, we set c = 2 to emulate a soft
dependency between these arms.

3.5 Weak KC Identification Algorithms

The algorithms for weak KC identification are described as follows. The graph G =
(KC,E) represents the domain model. Where E represents the dependency relations
between two KCs in the domain. The set of available arms is represented by A. The
mastery threshold ξ, error rate δ, and pre-sample count π , are input parameters. The
number of rounds the algorithm needs to find a weak KC is represented by t. The output
of the algorithms is the first KC detected as weak, if any, and the number of rounds to
find the weak KC t. The pseudocode for the algorithms is shown in Figs. 2, 3, and 4.

Fig. 2. Weak KC Identification Algorithm using HDoC sampling
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Fig. 3. Weak KC Identification Algorithm using Thompson sampling

Fig. 4. Weak KC Identification Algorithm using Random sampling

4 Simulations

We verify our proposed MAB methods through simulations using two methods. First,
we run simulations based on data from experiments on real students using a traditional
student model. Secondly, we generate random domain graphs and simulate students
based on a simple student mastery model.
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4.1 Simulations with Real-Student Dataset Using IRT

We use the DBE-KT22 dataset [13] to simulate a domain model and initialize the param-
eters of the student model. It is a knowledge-tracing dataset based off an undergraduate
databases course. The dataset includes a KC-KC mapping which provides the graph
structure of the domain and which we utilize to test the efficacy of our algorithms. In
addition to this graph structure, the dataset includes over 1000 transaction records of
various students who have taken an online practice assessment, containing information
regarding the correctness of every student’s answer to each question they encountered.
To model our simulated learners, we assume every separate transaction instance is rep-
resentative of an individual student and use their answers to model a sample student in
this population. Another piece of information this dataset includes is the ground-truth
difficulty of each question, which we use to calibrate the mastery levels of our simulated
learners.

We firstly preprocessed the dataset and performed a statistical analysis upon our find-
ings. Upon doing so we analyzed the relative difficulty of mastering each KC i by simply
computing the probability of any unique student answering a question involving i cor-
rectly, and maintaining a probability distribution for i for every student S. For questions
involving multiple KC’s i1, i2, …in, answers contribute to each probability distribution
equally. Questions are also further subdivided based off the dataset’s ground-truth dif-
ficulty level. From this we extract, for each KC-difficulty pair, the mean probability of
any student from our sample population answering correctly. These distributions are
first sampled, then inserted into Eq. (4) to randomly initialize the α values for each of
our simulated learner’s—such a strategy ensures that our simulation accurately reflects
a real-world scenario with realistic student’s and mastery levels that are not arbitrarily
determined. In addition, we also analyze the correlations between KC correctness, and
have found that certain KC’s have statistically significant correlations, which also adhere
to the KC-KC domain mapping the dataset provides. These correlations were also used
in our initialization of simulated learner masteries to represent how students who have
mastered one KC may be more likely to master a similar or pre-requisite KC.

Simulations using the DBE-KT22 dataset operated under Item Response Theory
(IRT) fundamentals. In IRT, certain models exist to map a student’s latent ability in
a particular KC to the probability that that student will answer it correctly, such as
the 1-parameter logistic model (1PLM). Consider a student s learning within a domain
consisting of K knowledge components: each KC i ∈ {1, 2, …, K} is associated with
a latent ability θ i, also referred to as their mastery in i. We utilize an IRT model taken
from the Stanford paper “Deep Knowledge Tracing” [14]:

P(correct|α, β) = c + 1 − c

1 + eβ−α
(4)

Where α = θ i represents the student mastery, β represents the difficulty to the question
given, and c is the probability of guessing a correct answer—in a four-option multiple
choice question, this would be 0.25.

The above equation is used to model the behavior of our artificial learners—that
is, the student AI used in our simulation. Each simulated learner possesses a particular
mastery level αi for every i, which paired with the above equation allows us to simulate
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the correctness of this student’s response given any question. These values are ground-
truths, initialized upon the creation of the learner, and our model must identify any such
αi that is underneath a given mastery threshold—that is, it is considered weak.

4.2 Simulations with Random Domain Graphs and Simulated Students

In addition to simulating learners using the DBE-KT22 dataset and IRT, we developed a
second set of simulations to test the generalizability of our MAB model. In this second
set of simulations, we generate random domain graphs for our artificial learners. These
random graphs are generated as DAGs using the NetworkX Python library1. We confirm
that each is acyclic and directed before using them in the simulation. The number of
nodes, nN , in a graph is set to the number of KCs that we would like in our simulated
domain model. The number of edges, nE , is randomly set to a number in the range [2,
nN × (nN − 1)]. Each student for each simulation is generated with a different random
graph. Once the graph is built for a simulated student, the nodes, i.e. the KCs for the
student model, must be initialized.

To model the simulated student’s ground truth mastery levels, we use the following
equation, from [4], to determine their proficiency μKC(s):

μKC(s) = w1 × apt(s) + w2 × pre(KC) (5)

Where apt(s) is the aptitude of the student and pre(KC) is the ratio of the number of
KC’s prerequisites the student has mastered to the number of prerequisites KC has. The
values w1 and w2 are tunable parameters. The value for apt(s) is set to a random value
in the range [0.1, 1] for all simulations except those testing the differences in aptitudes.
For those simulations three categories of aptitude are defined: weak, with values in the
range [0.1, 0.3]; medium, with values in the range [0.4, 0.6]; and strong, with values in
the range [0.7, 1].

The filling in of the student model for a graph is performed in a breadth-first fashion
starting with the first layer nodes, i.e. those without any prerequisites. For these nodes
μKC(s) is set to apt(s), the aptitudes at this layer correspond directly to the student’s
mastery of the KC. For the second layers and above, the above equation is used to cal-
culate μKC(s) taking into consideration the student’s mastery of the KC’s prerequisites.
Because we need to determine both the α and β parameters for each KC, for each node
in every layer we generate a random integer value for α in the range [200, 500] and use it
along with μKC(s) to calculate the β parameter for the KC. In this way we can generate
random domain DAGs and translate them into ground-truth student models for testing
artificial learners.

When these artificial students provide answers to questions their beta distributions
are sampled. This represents answering a question based on the student model we have
defined for the artificial learners. If a random value between 0 and 1 is less than the
sample, we consider the student to have answered the question correctly. Because we
would like to simulate the answering of multiple-choice questions, we have adjusted the
sample by adding a guess factor. The guess factor takes into consideration the number of

1 https://networkx.org/.

https://networkx.org/.
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choices in amultiple-choice question and represents the probability of a student correctly
guessing the answer. The adjusted probability of getting a question correct is defined as:

P(correct|α, β) = Beta(α, β) + 1 − Beta(α, β)

N
(6)

Where N is the number of choices in the multiple-choice question. Compare this to the
IRT formulation in the previous section. This is a simpler function for the probability that
the student will answer a question correctly. It aligns well to our definition of mastery
threshold and our Beta-Bernoulli MAB model.

4.3 Experiments and Results

The evaluation of our MAB algorithms is based on the correctness of each algorithm’s
output weak arm in comparison to the artificial learner’s ground-truth weak arms. That
is, the algorithm is correct if the output arm a ∈ AW where AW is the set of all ground-
truth weak arms as defined by ξ and the artificial learner’s KC proficiencies. If AW = ∅

then the model is only correct if it has not output an arm. We are also concerned with the
number of questions the MAB asks before the algorithm terminates, i.e., the efficiency
of the algorithm. Four experiments were conducted for each simulation method using
each MAB algorithm.

Experiment 1: KC Count. The number of KCs varies from 2 to 16. The other param-
eters, error rate, threshold, and aptitude, are kept constant at δ = 0.15, ξ = 0.7, student
aptitude = medium for DBE-KT22, and apt(s) to a random value between 0.1 and 1 for
random graphs, respectively. Results are shown in Figs. 5a and 5b.

Experiment 2:MasteryThreshold. Themastery threshold varies from 0.2 to 0.9while
keeping the other parameters, KC count, error rate, and aptitude, constant. These other
parameters are set to KC count = 16, δ = 0.15, student aptitude = medium for DBE-
KT22, and apt(s) to a random value between 0.1 and 1 for random graphs, respectively.
These results are shown in Figs. 5c and 5d.

Experiment 3: Aptitude. We test three levels of aptitude: weak, medium, and strong.
These aptitudes for the random graph experiment are described in Sect. 4.2. For experi-
ments using the IRT model, weak students suffer a flat 0.5 mastery penalty to all KC’s,
medium students’mastery is not changed, and strong students benefit froma 0.5 increase.
The other parameters are set to KC count= 16, δ = 0.15, and ξ = 0.7. Results are shown
in Figs. 5e and 5f.

Experiment 4: Error Rate. The error rate varies from 0.05 to 0.35 with a step size
of 0.05. The other parameters are set to KC count = 16, ξ = 0.7, student aptitude =
medium for DBE-KT22, and apt(s) to a random value between 0.1 and 1 for random
graphs. Results are shown in Figs. 5g and 5h.
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Fig. 5. (a) KC count experiments with DBE-KT22 dataset. (b) KC count experiments with ran-
domgraphs. (c)Mastery threshold experimentswith theDBE-KT22 dataset. (d)Mastery threshold
experiments with random graphs. (e) Aptitude experiments with the DBE-KT22 dataset. (f) Apti-
tude experiments with random graphs. (g) Error rate experiments with the DBE-KT22 dataset. (h)
Error rate experiments with random graphs.
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Fig. 5. (continued)

4.4 Discussion

Our simulations demonstrate the various tradeoffs between the three MAB algorithms
we have developed. In simulations using the DBE-KT22 dataset, we see that Thompson
algorithm uses far fewer questions than the HDoC algorithm, whereas HDoC is more
accurate.While the random algorithm is the least accurate of the three algorithms in these
simulations, it uses the least number of questions. The differences between the algorithm
accuracies are less apparent in the second set of simulations using randomgraphs. In these
experiments the Thompson and HDoC algorithms only slightly outperform the random
algorithm in each of the experiments. In these experiments, a similar number of questions
were asked to the DBE-KT22 experiments.With the HDoC algorithm again askingmore
questions on average than both Thompson and random algorithms. In general, the data
from the two methods of simulation show similar trends. However, in the simulations
using random graphs, we see much higher accuracies for each algorithm without as
pronounced a difference between each that is seen the DBE-KT22 experiments. The
trends that were seen in both simulations show how effective our algorithms are for
efficiently finding weak KCs.

From Figs. 5c and 5d, we see how adjusting the mastery threshold ξ changes the
accuracy and required questions of the algorithms. Increasing the threshold results in
much higher algorithmic accuracy and a lower number of questions required. From
Figs. 5e and 5f, we see that our model operates well even with students of varying
aptitudes. However, in the random graph simulations, Fig. 5f, we see a sharp drop in
accuracy for strong students. This may be due to the differing definitions of mastery
and must be examined further. From Figs. 5g and 5h, this experiment provides the most
unexpected results. We would expect that with an increased error rate, the number of
questions required for our algorithm to return would decrease significantly, but this is not
the case. We see that generally, as we increase the allowed error rate for our algorithm a
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corresponding decrease in accuracy and sample complexity follows. Note that because
here error rate is dependent on the variance of the beta distributions, it is undefined
for the naive random selection algorithm. Overall, from the results of our simulations,
we believe that the Thompson and HDoC algorithms are good candidates for use in an
MAB system for formative assessment. However, there are some limitations and room
for improvement. First, we do not consider “partial credit” answers (e.g., based on the
usage of hints or on the response time). Also, we did not model the soft or probabilistic
pre-requisites among learning objectives in the proficiency model. Second, the proposed
algorithm can be easily extended to generate multiple weak skills. Third, by defining
the opposite arm selection rule in the algorithm, we can generate the strong learning
objectives as adaptive feedback to the student as encouragement.

5 Conclusion and Future Work

We have presented the results of simulations using three different algorithms that can be
used in an MAB for identifying weakness or strengths of students from our results we
are confident that the Thompson sampling algorithm and, to a lesser extent, the HDoC
algorithm would be effective when used in an online adaptive formative assessment
system. The main advantage of these algorithms is that they allow the instructor to
specify the accuracy and efficiency criteria and that they effectively balance them with
a bandit algorithm. From our experiments, we find that the overall performance of the
proposed algorithms is quite consistent even after accounting for different variables. The
complexity is relatively small and particularly serviceable in a practical setting where
questionsmay be limited in nature and scope. In our futurework, wewill work to develop
methods for automated feedback generation that adapt to varied feedback strategies or
students’ needs. We will also refine and develop further the random graph model for
use in future simulation studies. The differences we discovered between the simulations
using the random graph strategy and the simulations using the student dataset will be
investigated. Furthermore, we will consider “partial credit” answers (e.g., based on the
usage of hints or on the response time) and the soft or probabilistic pre-requisites among
learning objectives in the proficiency model. Finally, we will evaluate the proposed
approach to measure its actual effectiveness in real-world learning settings.
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Abstract. In this paper, we introduceQuizMaster, an innovative web-based adap-
tive learning system designed for conducting formative assessment on-demand
anytime during students’ course study. QuizMaster reduces learner time spent
on assessment and accelerates formative feedback delivery. Leveraging a Multi-
Armed Bandit algorithm for question sequencing and feedback, it ensures intelli-
gent assessment processes. Additionally, we employ Large Language Models to
auto-generate questions, enhancing instructor productivity.When deployed, Quiz-
Master will serve to assess adaptive algorithms for formative assessment in real-
world learning scenarios. Through our detailed analysis of the QuizMaster archi-
tecture, we demonstrate how to leverage reinforcement learning and generative
intelligence in the development of systems for formative assessment.

Keywords: Adaptive Learning Systems · Intelligent Tutoring Systems ·
Multi-armed Bandits · Reinforcement Learning · Personalized Learning ·
Formative Assessment · Generative Intelligence

1 Introduction

Formative assessment can be an integral part of the learning process in formal educational
settings [1]. It differs from summative assessment in that it is meant to be an assessment
for learning and not an assessment of learning through grading [2]. The goal of formative
assessment is to provide individualized feedback to enhance learners’ understanding
of the subject materials and guide their studies. Therefore, formative assessment aids
the student by helping them bridge the gap between their knowledge state and their
learning goal, i.e., mastery of the learning objectives (LOs).While formative assessment
can be fundamental to a student’s learning process, current self-quizzes for formative
assessment face two significant limitations. First, feedback provided in the self-quizzes
may be generic and lack the depth needed for students to gain a nuanced understanding
of their mistakes, hindering targeted improvement. Second, developing high-quality
self-quizzes requires extensive resources, time, and expertise. Institutions with limited
resources may face challenges creating effective, diverse, and engaging quiz content.
Thus, we aim to provide a solution to both problems by employing course modelling,
reinforcement learning techniques, and large language models in a web-based adaptive
formative assessment system – QuizMaster, introduced in this paper.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 55–67, 2024.
https://doi.org/10.1007/978-3-031-63028-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63028-6_5&domain=pdf
http://orcid.org/0000-0002-5876-093X
http://orcid.org/0009-0004-6576-2812
https://doi.org/10.1007/978-3-031-63028-6_5


56 F. Lin et al.

QuizMaster is a fully-fledged client-server application comprised ofweb-based inter-
faces, an application server, and a database. The goal of QuizMaster is to shorten the
assessment-feedback cycle of formative assessment. It accomplishes this goal in three
ways: a) reducing the time that learners spend on assessments, b) providing instantaneous
automated feedback to the learner, and c) decreasing the time instructors spend devel-
oping content for assessments. In these ways, QuizMaster can increase efficiency for
both students and instructors. To increase the learning efficiency for students, QuizMas-
ter employs a Multi-armed Bandit algorithm to provide adaptive feedback and question
sequencing. To increase the question creation efficiency for instructors, QuizMaster
leverages large language models to create questions for assessments. These approaches
together allow QuizMaster to provide a learning environment for students to undergo
efficient formative assessment and receive individualized feedback.

The remainder of this paper is organized as follows. Related work and background
information are reviewed in Sect. 2. The QuizMaster implementation is discussed in
Sect. 3. In Sect. 4, evaluations of the various components and our proposed testing, both
simulation and in-person, are discussed. Finally, in Sect. 5, we conclude the paper with
a discussion about the system and future work.

2 Background and Related Work

Reviews of systems designed to provide automated feedback have been performed previ-
ously [3], including for specific domains such as programming instruction [4].McLaugh-
lin and Yan (2017) reviewed various delivery methods for formative assessment [5].
While the research into tools for formative assessment is extensive, most of these sys-
tems are limited in scope and are specialized in their domain. We seek to develop a
generalized system that can be used for different knowledge domains. To this end, we
need a simple and general algorithm to provide adaptive formative feedback.

Traditional adaptive learning systems (ALS) focus on forming a robust studentmodel
to estimate a learner’s knowledge state. This estimated knowledge state, or mastery of
knowledge components, is used for question sequencing. Traditional ALS algorithms
include Bayesian and Logistic Knowledge Tracing [6], Item Response Theory [7], and
Partial-Observable Markov decision processes [8]. While research into these algorithms
is extensive, they do have limitations. These algorithms typically require a set of param-
eters that are difficult to tune [9, 10]. They may also require making assumptions about
a learner’s mastery of a subject beforehand. This may require pretesting or relying on
self-assessment by the learner, potentially leading to inaccurate initial data being used to
calibrate parameters. To address these limitations, we have chosen to utilizeMulti-armed
Bandit (MAB) algorithms.

MABs are a class of reinforcement learning algorithm that seeks to provide a solution
to the exploitation-exploration problem. MABs are a recent addition to the field of
adaptive learning. A recent survey by Mui et al. (2021) explores the various use cases of
MABs inALSs [11].MABalgorithms have been shown to be simpler to implementwhile
remaining as effective as traditional algorithms when used for formative assessment [9,
13]. Lattimore and Szepesvári (2020) provide a comprehensive introduction to the topic
of MABs [12]. The goal of an original MAB is to maximize the total reward they receive
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whileminimizing the regret ofmaking choices. The decisions surroundingmanaging this
trade-off and the choice of sampling policies they use differentiate MAB algorithms. By
using anMABalgorithm,we showhow the number of questions asked during assessment
to detect mastery can be reduced, thus increasing student efficiency.

One of the most challenging and time-consuming aspects of formative assessment is
the generation of appropriate questions. The questions asked in an assessment must be
relevant to theLOs of the course. Therefore, subjectmatter expertswith sufficient domain
knowledge usually create the questions for the course. However, due to the substantial
cost of time and resources that question generation requires, developing systems that
automatically generate questions is an active area of research [14]. We aim to provide
efficient ways for instructors to generate effective questions for use with QuizMaster by
turning to large language models (LLMs) for assistance.

With the recent developments in LLMs, there has been a growing interest in their use
for building and integrating with ALSs. One application of LLMs in ALS that may prove
fruitful is in the generation of questions for assessments [15]. The use of generative AI
systems such as OpenAI’s ChatGPT may lead to an increase in instructor productivity
by reducing the time they spend on manually crafting course content. One example of
this increase in productivity is using these models to generate programming questions
by integrating an LLM with a web-based user interface [16]. However, LLMs are not
yet in a state of development where it is safe to use them without humans in the loop.
Therefore, while an increase in efficiency may be realized by instructors when creating
content, an expert’s evaluation of the questions is still required before they are presented
to students [14].

3 System Overview

One of the primary goals of QuizMaster is to contribute to the research and develop-
ment of functioning formative assessment systems. Therefore, we provide the following
thorough explanation of the system architecture and each of the various modules that
QuizMaster is composed of.

3.1 System Architecture

QuizMaster is implemented using a client-server architecture (see Fig. 1). This archi-
tecture allows for flexibility in separating the concerns of the client applications and
the server application. Two client applications accessing a single server application,
one for students and another for instructors, have been designed and developed in the
architecture. Both the student and instructor applications utilize the open-source ReactJS
framework1.

Student Interface. The student interface consists of an assessment component and
a student profile. Through the assessment component, students can take quizzes and
receive formative feedback. It provides the presentation for the quizzes while the server
executes the logic of the adaptive algorithms. From the assessments home screen, the

1 https://react.dev/.

https://react.dev/
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Fig. 1. The System Architecture of QuizMaster

student selects a course and a unit from that course to begin a quiz. The student can only
choose from courses for which they are registered. After they have chosen the course,
they will be able to select the unit they want to be tested in. Presently QuizMaster
supports multiple-choice and interactive questions. The interactive data structures and
algorithm questions are sourced from OpenDSA2 (see Figs. 2 and 3). Future work will
involve integrating other assessment types.

During a quiz the student is presented with a single question at a time. They select
their answers and press the submit button. While a timer indicating the amount of time
a user has been on a question is shown below the questions, a timer indicating the total
time spent on the quiz appears in the upper right-hand corner. The number of questions
that a student will be presented with is determined by the MAB algorithm. However,
the number of questions will not be more than the budget of the quiz. The budget is
displayed beneath the question beside the timer. After the student completes a quiz,
they are shown the results view (see Fig. 7). This page provides summative feedback as
well as the formative feedback including the weak LO and the recommended remedial
learning materials. Along with the formative feedback, the students’ chain of weak
learning objectives is displayed as a graph. This serves to recommend the sequence of
LOs that the student should study to improve their proficiency in their weak LO. How
this chain of weak LOs is generated is discussed in Sect. 3.5. The student interface also
has a profile page where students can view the results of their completed quiz sessions
and update their profile information.

Instructor Interface. The instructor interface allows instructors to create and maintain
course models. When an instructor signs in, they are presented with the courses assigned
to them. Instructors can view and update the information associated with each course,
including the individual units, learning objectives, quiz parameters, and questions. There
are two types of multiple-choice questions present in QuizMaster: expert-generated and
LLM-generated. The LLM-generated questions will be further discussed in the Content
Library section. The expert-generated questions are developed by the instructor and then

2 https://opendsa-server.cs.vt.edu/.

https://opendsa-server.cs.vt.edu/
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Fig. 2. Example of a multiple-choice question. The student selects what they think the best option
is and submits it. Another question is presented if a stopping criterion is not met.

Fig. 3. Example of an interactive-type question. This figure shows that a student is performing
an auto assessed graph question. We can observe that the student has scored one out of six points,
there are three points remaining, and the student has lost two points. We use the open-source
material provided by OpenDSA for these interactive questions.
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Fig. 4. The Instructor interface for creating multiple-choice questions. This screenshot shows the
question content step in the question generation form. At this step the instructor adds the content
to the body of the question as well as the options.

input into the system manually (see Fig. 4). The LLM-generated questions produced
using separate scripts are entered manually into the form after the instructor validates
them.
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Rich text format is used for question creation, allowing different formatting and vari-
ability in content so that the questions can bemore than only plain text. For instance, code
can be displayed using code blocks with formatting that depends on the programming
language. Images can also be included in the content of the question.

When entering questions, the instructormust select the appropriate learning objective
to associate with them. This association will automatically include them as potential
candidate questions when the MAB algorithm selects their LO during a quiz. This
mechanism is another time-saving benefitQuizMaster offers, alongwith having the LLM
generate questions. Here, instructors only need to enter the questions without manually
sequencing the questions for each assessment. This method can save instructors precious
time that can be spent on more important teaching tasks.

Server Application. The server, implemented as a NodeJS3 application, consists of
modules for the API controller, business logic, MAB, domain model, and database
access and schemas, as shown in Fig. 1. The modularity of the server architecture gives
the application flexibility when components need to be added, updated, and removed.
This flexibility will be especially important for QuizMaster to be developed into a robust
and versatile ALS platform.

Database. All the application data entities and content are stored as documents in a
MongoDB4 database. The NoSQL document-based MongoDB gives us the flexibility
and ease of use we need for QuizMaster.

3.2 Content Library

TheQuizMaster content library consists of the questions available for quizzes. QuizMas-
ter currently focuses on multiple-choice and interactive-type questions. These questions
can be auto-graded in formative assessment for immediate feedback because they have
definite answers. The interactive questions, obtained from the open-sourcematerials pro-
vided by OpenDSA, integrate directly into the student application. We chose to integrate
OpenDSA questions because initial testing will focus on the content from a course in
data structures and algorithms. Including interactive exercises will allow us to evaluate
the effectiveness of having incorporated different question types.

To improve instructor efficiency, LLM-generated multiple-choice questions are
included in the content library after experts verify their validity. The LLM-generated
questions QuizMaster uses are generated with LangChain5 using OpenAI’s GPT3.5 and
GPT4 models as described by Jhajj et al. in [15]. Instructors must manually verify each
question before they submit them to the database. They can edit them to their liking from
within the instructor interface. An example of a question generated using the LangChain
question generator module is shown in Fig. 5.

3 https://nodejs.org/.
4 https://www.mongodb.com/.
5 https://www.langchain.com/.

https://nodejs.org/
https://www.mongodb.com/
https://www.langchain.com/
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Sure! Here are ten multiple choice questions on the concept of data structures, each with four 

options and an explanation for the correct answer.

Question 1: Which of the following is a type of data structure?

A) Java

B) Binary Tree

C) HTML

D) JavaScript

Correct Answer: B) Binary Tree

Explanation: A binary tree is a data structure in which each node has at most two children, 

which are referred to as the left child and the right child.

…

Fig. 5. An example response from the LangChain question generator when prompted to return
ten multiple choice questions on the concept of data structures.

3.3 Course Model

One essential component of QuizMaster is the course model. The course model specifies
the relationships among the set of knowledge components in a course. Students must
progress through the course model by exposure to each of the knowledge components in
an appropriate way for learning. In QuizMaster, the course model represents the prereq-
uisite relationships among LOs of a section and/or unit in a course. These relationships
are represented as anAND/OR graph described in [17]. The graph structure of the course
model is considered when updates are made to the student model for LOs and when the
system searches for weak LOs. Figure 6 illustrates an example of course models, the
course model for COMP272 Data Structure used in QuizMaster.

Fig. 6. An example of course models used in QuizMaster for a data structures and algorithms
course.
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3.4 Question Sequencing and Student Model

QuizMaster utilizes an MAB algorithm for question sequencing and mastery detection.
The MAB technique that QuizMaster utilizes is the hybrid algorithm for the Dilemma
of Confidence HDoC algorithm described by Kano et al. [18], which is modified to find
the weak arms as described in [19]. The HDoC algorithm is a form of upper confidence
bound (UCB) sampling policy that estimates whether an arm is strong within a degree
of confidence above a threshold. In QuizMaster, the arms of the bandit correspond to the
LOs, so pulling an arm means asking the student a question. A student’s answers to a
question are binary, either right or wrong. Thus, the student’s proficiency for a given LO
can be modelled as a Beta distribution with the alpha and beta parameters corresponding
to the correct and incorrect answers, respectively. This model of student progress defines
the student model of the system. It represents an estimate of the student’s knowledge
state during the quiz. The task of the MAB algorithm is to determine the next LO to
draw a question from so that sufficient evidence can be collected to determine whether
the LO is a strong or weak one for the student. The QuizMaster MAB seeks to find weak
LOs for a student to invest more learning efforts in.

The QuizMaster question sequencing and mastery detection work as follows. Ini-
tially, the system has no information on the student’s knowledge state for the LOs in
a unit; therefore, a pre-sample is conducted. In the pre-sample, each LO is sampled
an equal number of times, with questions drawn randomly from the LOs. The number
of pre-sampling rounds is a parameter set by the instructor. Responses, in the form of
answers, are sent to the server, and the parameters for the beta distributions of each
sampled LO are updated accordingly. This update may have cascading effects, known as
pseudo-rewards, as the LOs with which the sampled LO has prerequisite relationships
may also be updated. Once the pre-sample is completed, the main loop of the MAB
algorithm is entered. After the LO update is complete with the final pre-sample question
being answered, the stopping criterion is checked. The quiz will stop when one of the
following conditions is met:

• The budget is reached, i.e., the maximum number of questions allowed is asked.
• The algorithm determines that there are no weak LOs, i.e., all LOs are strong.
• The algorithm is confident that it has found one or more weak LO.

If no stopping criterion applies, theMAB samples another LO. TheMABdetermines
which LO to draw a question from based on the HDoC sampling policy. The system
presents the student with an available question from that LO, chosen at random. The
system will continue to ask questions in this sample-update-check loop until one of the
stopping criteria is met.

3.5 Formative Feedback Generation and Presentation

At the end of a quiz session when a stopping criterion is met, the results of the quiz
and the formative feedback are presented to the student (see Fig. 7). To produce the
formative feedback, the chain of weakness in the LO-graph is calculated. A graph search
is conducted to calculate the foremost weak LO, as described by Lin and De Silva in
[17]. This search finds the weak LOs that have the most significant learning potential.
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Fig. 7. Assessment results screen shown to the student after they have completed an assessment.
The screen shows the formative feedback provided to the student and a recommended learning
path. Students can access this screen from their profile by clicking on the corresponding completed
quiz session.
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That is, they are the LOs that may be the optimal ones for the student to spend time
improving upon. This is an active line of research in our group, hoping to generate even
more personalized feedback corresponding to individuals’ weaknesses.

4 Evaluation of Methods and Future Testing

QuizMaster is the culmination of several research studies into algorithms and techniques
for formative assessment in adaptive learning within the Intelligent Educational Systems
research group at Athabasca University, Canada. Preliminary simulation tests have been
conducted on the HDoC sampling policy used in QuizMaster’s MAB algorithm [19].
Using AI students, these simulations have shown promising results for reducing the
number of questions asked before a weak LO could be found. Evaluations of the LLM
question generation technique have shown it is effective at creating domain-specific
multiple-choice questions [15]. We will use the questions generated for this study in our
student and simulation testing. Other work in our group has also shown how LLMs can
be used in adaptive practicing systems [20]. The technique for finding the chain of weak
LOs within the graph-based domain model is based on the results of simulation testing
to generate adaptive feedback for formative assessment [17]. The simulations in this
study showed that MABs combined with a graph-based domain model can be effective
at finding weak LOs in formative assessment. Now that QuizMaster has integrated these
techniques, they can be evaluated with real students.

Testing with real students will focus on assessing a set of LOs for an intermediate-
level data structures and algorithms course. We will quiz students with a version of
expert-generated questions and a version of LLM-generated questions to compare the
effectiveness of different question-generating techniques. We will also compare the
HDoC and other MAB sampling algorithms by evaluating the student’s mastery and
question sequencing effectiveness. Our testing will also include an opportunity for stu-
dents and instructors to provide us with feedback about using the system so that we can
further enhance the user experience and interaction.

5 Conclusions and Future Work

We introduced QuizMaster, a fully-fledged web-based formative assessment system.
It can save students time on assessment, providing immediate feedback to learners on
weak learning objectives, and increasing instructor efficiency in creating quiz questions.
Through our discussion of the QuizMaster architecture, we demonstrate its effectiveness
for providing formative assessment by integrating reinforcement learning and generative
intelligence. This makes QuizMaster a valuable addition to the general formative feed-
back applications discussed in the literature. It is important to present fully engineered
systems in academic literature to benefit others who need them.

As discussed above, the next step for developing the QuizMaster system will be
testing with students in real-world learning scenarios. After this testing, wewill continue
to develop the QuizMaster system so that it canmanagemore general learning use-cases.
Future enhancements to QuizMaster will include the auto-generation of questions in the
instructor interface as well as more personalized feedback generation. The potential for
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LLM and other generative technologies to enhance systems such as ours is significant,
and we will continue to research ways to leverage these technologies.

Finally, the end goal of our testing and development is for QuizMaster to become
a fully general formative assessment tool. We intend for QuizMaster to be capable of
integrating with popular learning management systems using the learning tools interop-
erability (LTI) standard. This will allow QuizMaster to be used alongside a vast number
of applications, helping both students and instructors reach their goals more efficiently.
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Abstract. This work-in-progress study aims to explore and analyze the growing
impact of large language models (LLMs) in the fields of education and industry.
We preliminarily review how LLMs can be integrated into educational contexts
with their technical features, open-source nature, and applicability. Through a
systematic search, we have identified a selection of open-source LLMs that have
been released or significantly updated post-2021. This initial search indicates a
thriving field with immense potential for both academic and industry applications.
While LLMs hold promise for education, some challenges need to be addressed.
These include limited application of open-source LLMs, concerns regarding data
privacy, content accuracy, and potential biases. It is critical to carefully consider
these factors before deploying LLMs in educational settings. However, our prelim-
inary research highlights the versatility of LLMs in generating educational con-
tent and supporting diverse instructional strategies. This suggests a shift towards
more adaptive and personalized learning environments. By assessing the suitabil-
ity of these models for educational purposes, our study lays the foundation for
future research aimed at fully maximizing the potential of open-source LLMs to
transform teaching and learning practices. As our work progresses, we plan to
expand our investigation to explore the broader implications of LLMs on edu-
cational outcomes and pedagogical contexts. Ultimately, our goal is to facilitate
dynamic, inclusive, and effective learning experiences across various educational
environments.

Keywords: Large Language Models · Open-Source · AI in Education ·
Educational Technology · Pedagogical Innovation

1 Introduction and Literature

The large languagemodels (LLMs), such asGPT-3 and its variants, have greatly impacted
education [7, 8]. Computational tools at such high levels can generate human-like text
and engage in nuanced conversations, promising to enhance educational methodologies
and outcomes [3, 14]. This capability allows for personalized feedback and supports
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various instructional strategies, such as virtual tutoring and interactive learning envi-
ronments [4]. They have been demonstrated to provide quick and correct responses to
student inquiries across different research studies [3, 11, 13]. Additionally, LLMs could
assist instructors in course development, lesson planning, assessment, and educational
evaluation, representing a paradigm shift in pedagogy and assessments to incorporate
these tools [13]. These functionalities show the potential of LLMs in delivering person-
alized learning experiences, a shift in the paradigm of teaching and assessment methods.
In this preliminary research, we are going to explore the expanding influence of LLMs
on education, focusing on how they can be useful in creating and facilitating learning,
with a particular interest in the challenges and benefits associated with their use, mainly
regarding open-source models.

However, despite the advantages that come from the use of LLMswithin educational
contexts, there are some substantive barriers to such wide implementation. One major
gap is the limited exploration and application of open-source LLMs, where proprietary
models, such as OpenAI’s ChatGPT, have been extensively used in various sectors,
with little investigation of open-source alternatives offering similar benefits (Merrick
et al., 2022). The nature of models such as OpenAI’s ChatGPT is that they are black
boxes, and there is little knowledge of their training methods or materials [16]. Open-
source models promise a step towards providing explainability in AI systems [16]. The
existing literature generally supports the use of open-source software in education, for
being affordable, adaptable, and encouraging collaboration and innovation [1, 15, 20]
but lacks a systematic understanding of how open-source LLMs have been used. Open-
source LLMs give educators the opportunity to adapt and personalize these technologies
according to their particular instructional requirements. With that, cutting-edge AI tools
should be accessible to all and bring down barriers to equitable and inclusive learning
environments [11, 18, 21]. Explainable AI systems are crucial in education as they
ensure that AI tools are transparent and understandable to learners and educators [9].
This transparency builds trust between all stakeholders and AI systems by providing
insight into their decision-making process [9].

This research will address the existing research gap by exploring the range of LLMs
available, focusing on open-source models, and evaluating their suitability for educa-
tional purposes. By investigating the technical features, open-source nature, and potential
educational applications of LLMs, we will deepen our understanding of how these tech-
nologies can be effectively integrated into educational settings to enhance and create
dynamic, inclusive, and effective learning experiences.

2 Methods

2.1 Research Questions

The study is guided by two primary research questions:

1. What are the current available LLMs in the market, across both educational and
industry sectors, and which of these are open-source? How have these available
LLMs been used?
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2. How do LLMs’ technical features and open-source nature influence their suitability
for educational applications in English-speaking contexts?

These questions aim to explore the landscape of LLMs, focusing on open-source
models, and to identify the challenges and potential solutions for their adoption in
education.

2.2 Search Strategy

Our study follows Snyder’s recommendation for the review procedure, including the
design, conduct, analysis, and structuring of the review [19]. These phases ensure that
our study can offer new insights or propositions related to the use of open-source LLMs
in education.

2.2.1 Eligibility Criteria

During the Conduct phase, as Synder (2019) mentioned, we searched these open-source
LLMs by partially following the established PRISMA guidelines for the systematic
review procedure [17]. Consequently, the eligibility criteria for selecting LLMs for this
review were defined as follows:

• Open Source: Only LLMs that are openly available and free to use were considered.
• Language: TheLLMsmust primarily support English, given the focus on applicability

in English-speaking educational contexts.
• ReleaseDate:TheLLMs included in the studymust havebeen releasedor significantly

updated after 2021. This criterion ensures that the review focuses on the most recent
advancements in the field.

• Predecessor: If the LLMhas its predecessor, the predecessor is excluded. For instance,
LLaMA was excluded since Meta released LLaMA 2 in July of 2023.

Table 1 below has been populated with the full compendium of inclusion and
exclusion criteria employed:

Table 1. LLM Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Open-source Not open-source

Language in English LLM is not supported in English

Released after 2021 Released before 2021

Include the latest model Predecessor is found, such as LLaMA

2.2.2 Consulted Sources

The search for relevant literature and resources on open-source LLMs involved con-
sulting several key databases and popular search platforms to ensure comprehensive
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subject area coverage. The search sources included Google Scholar, Google, GitHub,
andHugging Face. These sources were chosen for their wide reach and diverse collection
of academic literature, technical documentation, open-source projects, and community
discussions relevant to LLMs and their application in education and industry.

2.3 Screening and Selection

Our research carefully gathered a vast collection of LLMs, aiming to offer a comprehen-
sive overview of the LLMs currently used in educational settings. To achieve this goal,
we implemented a thoughtful selection process to identify the most relevant and innova-
tive LLM applications. Through this method, we were able to extract valuable insights
regarding the trends and patterns that are crucial in the field of educational technology.

2.3.1 Data Collection

The search for relevant information was guided by a set of established terms aimed
at capturing the breadth and depth of LLMs and their applications between December
2023 to the end of January 2024. The terms included “Large Language Models”, “Top
Large Language Models”, “Large Language Models in Education”, “Top Large Lan-
guage Models in Industry”, “Open Source Large Language Models”, and “Transformer
Models”. From these terms, two main search strings were formulated:

((“Large LanguageModels”OR “Large LanguageModel”OR “TopLarge Language
Models” OR “Top LLM” OR “LLM” OR “LLMs” OR “Transformer Models”) AND
(“Education” OR “Industry”))

((“Open Source Large Language Models” OR “Open Source Large Language
Model” OR “Open Source LLM” OR “Open Source Transformer Models”) AND
(“Education” OR “Industry”))

These search strings were strategically designed to capture the most relevant and
recent contributions to the field of Educational Technology and the use of AI in Edu-
cation. We then organized the data into various columns in a spreadsheet, such as the
name of LLM, owner, open-source (Yes/No), release date, user interface (Yes/No), used
in education or research (Yes/No), Used case in industry (Yes/No/note), intended users,
limitations, website, and notes.

2.3.2 Data Analysis

The collected data underwent a rigorous evaluation by the first and second authors,
chosen for their expertise in Educational Technology and AI applications in educa-
tion. This qualitative synthesis aimed to identify and categorize the LLMs based on the
established criteria. Discrepancies between reviewers were resolved during several ses-
sions of research meetings. Finalized results for these discrepancies were settled during
the meetings. Our review methodological framework supports the objective of map-
ping the landscape of open-source LLMs and their readiness for educational adoption,
highlighting technical barriers and proposing pathways to mitigate these challenges.
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3 Results

Our investigation offers new insights into the evolving domain of open-source LLMs and
their applications within educational and industry sectors. By analyzing the findings in
a systematic manner, we shed light on the current state and future possibilities of LLMs
in improving educational experiences and industrial processes. This section provides
a comprehensive understanding of the capabilities and practical applications of LLMs,
laying the foundation for the in-depth analysis that will follow.

3.1 Analysis of Current Open-Source LLMs in Educational and Industry Sectors

The exploration of open-source LLMs in today’s market reveals a growing field of
technology that holds potential for both educational and industry applications. To address
research question 1, a systematic search initially identified a total of 41 LLMs. However,
after applying our inclusion criteria, we narrowed it down to 13 open-source LLMs
that were released or significantly updated post-2021, (see Table 2). This highlights
a crucial moment in the accessibility and utilization of these advanced computational
tools. Table 3 provides a chronological assessment of these models, starting from the
most recent release and going back to the earliest.

Upon analysis, it was found that only one LLM, called Cohere Sandbox, explicitly
recognized for its application in educational settings. Most of the LLMs, do not directly
mention their potential for educational usage. However, Llemma is noted for its ability
to solve math problems. This finding indicates that the field is still in its early stages
of development, with the potential for educational use starting to emerge, but not yet
extensively explored.

In various industry applications, LLMs demonstrate their utility in different ways.
They can be used for tasks such as text generation, conversational AI, and specialized
research support. For example, GPT-J and Bloom exhibit a wide range of capabilities,
showcasing their versatility. MPT from the MosaicML Foundation Series and LLaMA2
by Meta have gained broad adoption due to their robust performance and scalability,
which are essential for large-scale applications. Additionally, Cohere Sandbox’s partner-
ships with major tech entities like Oracle and Google Cloud indicate direct applications
for improving business operations through language models.

Table 2. Overview of Open-Source LLMs Released Post-2021: Accessibility, Application in
Education, and User Interface Availability

Metrics Count Details

Total Open-Source LLMs 13 All identified LLMs are open-source

LLMs with User Interface 1 Only 1 LLM offers user interface

LLMs Used in Education 2 2 LLMs have mentioned uses in education or
potential educational applications

Earliest Release Date 2021-06-01 Earliest release date of included LLMs

Latest Release Date 2023-11-01 Latest release date of included LLMs
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These technologies have a broad range of users, including the general public,
researchers, and various industries. This highlights their widespread appeal and poten-
tial impact. This analysis not only examines the current state of open-source LLMs but
also emphasizes their potential to make significant contributions to both educational
outcomes and advancements in various industries.

Table 3. Comparative Overview of Open-Source LLMs

LLM Owner Release Date User
Interface

Education Usage

GPT-J Stella Biderman 2021/06 No No

Bloom BigScience 2022/07 No No

GODEL Microsoft 2022/10 No No

Cohere Sandbox Cohere 2022/11 Yes Yes

Alpaca Stanford University 2023/03 No No

Guanaco CausalLM 2023/04 No No

OpenLLaMA Openlm-research 2023/04 No No

MPT MosaicML Foundation Series 2023/05 No No

Falcon Technology Innovation Institute 2023/06 No No

LLaMA2 Meta 2023/07 No No

Vicuna-13b LMSYS 2023/08 No No

Llemma EleutherAI 2023/10 No Yes

Orca 2 Microsoft 2023/11 No No

3.2 Suitability and Open-Source LLMs for Educational Integration

To address research question 2, we further analyzed whether LLMs’ technical features
and open-source nature can influence their suitability for educational purposes. LLMs
likeGPT-J,Bloom,GODEL,CohereSandbox, andAlpaca are open-source,whichmeans
that they are readily available to developers and researchers. This accessibility allows
for customization and integration of these models into educational platforms, enabling
the creation of innovative teaching and learning tools that can be freely adapted to fulfill
diverse educational requirements.

Our classification also reveals various industry applications for these LLMs, rang-
ing from text generation to partnerships with major technology companies (such as
Cohere Sandbox). These applications demonstrate the versatility and potential of LLMs
in educational settings. For example, text generation can create dynamic educational
content for both instructors and students, while conversational AI features can support
interactive learning and personalized tutoring systems. Cohere Sandbox, in particular,
explicitly mentions its educational use and provides a user-friendly interface, highlight-
ing its direct applicability to educators and learners. Our preliminary findingmay suggest
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that the technical strengths utilized in industry contexts hold great promise for enhancing
educational experiences.

While the analyzed open-sourceLLMspossess extensive capabilities, it is essential to
consider their limitations when assessing their suitability for educational purposes. The
data provides insights into these models’ limitations, such as technical constraints and
the absence of user interfaces (excluding Cohere Sandbox). These limitations indicate
areas that require further development in order to fully unlock the educational potential
of LLMs.

The technical features and open-source nature of LLMs provide a strong foundation
for their adoption and adaptation in educational contexts. The results indicate that while
current applications may lean towards industry, the underlying capabilities of these
models are highly relevant and adaptable for educational purposes.

4 Discussion and Implications

The preliminary review of the currently available and popular LLMs of this study pro-
vides insight into both education and industry. We discuss the implications of LLMs’
technical features, specifically focusing on their emerging usefulness and applicability
in educational contexts.

Our findings indicate that several open-source LLMs, such as GPT-J, Bloom,
GODEL, and Cohere Sandbox, share foundational technological strengths, as they
exhibit diversity in adaptability and educational integration. Table 4 offers recommen-
dations for how these LLMs can be integrated to support pedagogy. This open-source
feature not only democratizes the use of advanced AI technologies but also promotes
innovation by allowing developers and technologists to apply these models in various
educational settings [1, 15]. Additionally, the inherent flexibility of open-source mod-
els can greatly expedite the creation of personalized learning experiences, interactive
content, and automated assessments, aligning with the shift toward adaptive, active, and
student-centred learning environments [10, 11]. For example, GPT-J’s text generation
capabilities could be used to support creative writing modules, while Bloom’s multilin-
gual support makes it useful in linguistically diverse educational settings. Cohere Sand-
box, on the other hand, stands out for its explicit educational orientation and user-friendly
interface that facilitates practical application by educators and learners.

Moreover, the comparison highlights the distinct advantages of eachLLM’s approach
to common educational requirements, such as personalized learning pathways and auto-
mated assessment tools. For instance, the flexibility of open-source models like GPT-J
and Bloom allows for extensive customization, which aligns well with pedagogical
models that emphasize adaptive learning and student engagement.

However, the value of LLMs in education goes beyond their technical capabili-
ties [7, 8]. The societal and ethical implications of deploying such advanced AI tools
in educational settings require careful consideration. Concerns regarding data privacy,
the accuracy of LLM-generated content (e.g., misinformation and hallucinations), and
the potential reinforcement of biases present significant challenges [2, 5, 8, 13]. While
Cohere Sandbox may excel in providing transparency and ease of use, other models
like GPT-J and Bloom may need additional support to ensure ethical application, given
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Table 4. Applying LLMs into education

LLM Possible Educational Applications

GPT-J Suitable for supporting writing and generative purposes

Bloom Multilingual support and use in linguistically diverse settings

Cohere Sandbox General educational data processing

Alpaca Providing feedback to students; educational administration

Guanaco Multilingual translation

MPT Suitable for business education and training for social media

Falcon General educational inquiries

Vicuna-13b General educational inquiries but limited in its accuracy of factual
knowledge and math capabilities

Llemma Suitable for math education

Orca 2 Suitable for creating step-by-step instructions or reasoning tasks

their broader generative nature. Therefore, integrating LLMs into educational platforms
necessitates a robust framework for ethical use, emphasizing transparency, accountabil-
ity, and the inclusion of diverse perspectives in model training and application [6, 12,
13].

The findings of this study highlight some overlaps between the industrial applications
of LLMs and their potential educational uses. The versatility demonstrated by LLMs in
tasks such as text generation, conversational AI, and data analysis suggests numerous
opportunities for educational applications [4, 13]. For instance, the ability of LLMs to
generate diverse and complex textual content can reform the creation of educational
materials and provide customized resources for diverse students [8]. Furthermore, the
capabilities of conversational AI can facilitate the development of virtual tutors and inter-
active learning environments, offering personalized feedback and support to students [4,
13].

Cohere Sandbox serves as a model for directly applying LLMs to enhance teach-
ing and learning, as it explicitly mentions its educational applications and offers a
user-friendly interface. By providing a user interface, barriers for educators and stu-
dents are significantly reduced, making it easier to explore and harness the capabilities
of LLMs in educational settings. This highlights the importance of developing user-
friendly platforms and tools that can leverage the power of LLMs to support educational
objectives.

5 Conclusion and Future Directions

In this work-in-progress research, we continue the systematic and empirical evaluation
of open-source LLM systems. We intend to find out their relevance and suitability for
educational purposes. These first findings provide a simple understanding of the current
state and the possible potential of LLMs in this field. Acknowledging the preliminary
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nature of our work, we are ready to broaden our view by tapping into more academic
databases. This strategic expansion aims to better understand how open-source LLMs
could be seamlessly woven into educational methodologies, examining adaptability,
practical implementation, and overall efficacy in enriching teaching and learning envi-
ronments [12, 13]. Some open-source LLMs suffer partially from the same black box
criticisms as their proprietary counterparts [16]. However, future work into open-source
LM development will inherently increase the explainability of such systems. Future
studies must pay attention to the implications of LLMs on educational outcomes, that
is, learning outcomes, student engagement, and the cultivation of analytical and critical
thinking skills. Similarly, we need further research on customizing LLMs under various
pedagogical contexts, such as language learning and STEM disciplines.

In conclusion, incorporating open-source LLMs into educational spheres does indi-
cate a transformational turn in pedagogical methodologies. Taking it upon ourselves to
hone down on these technological advancements, mitigating their inherent constraints,
and making our collective alliance with educators, technologists, and policymakers,
hopefully, will unleash the full spectrum of possibilities provided by LLMs. This col-
laborative effort would provide dynamic, inclusive, and productive learning experiences
across varied environments [12–14].
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Abstract. We present a highly performant and scalable conversational
virtual teaching assistant, Jill Watson, to enhance teaching presence in
online classrooms. Jill Watson leverages the generative AI capabilities
of ChatGPT and the underlying OpenAI’s GPT large language models,
along with dense passage retrieval and retrieval-augmented text genera-
tion to answer student questions about instructor-approved courseware
anytime and anywhere. This courseware may include natural language
text from textbooks, user guides, video lesson transcripts, course web-
sites, and class syllabi. This version of Jill Watson has been deployed
in several classes with close to 1300 students at the Georgia Institute
of Technology as well as in two community colleges in the Technical
College System of Georgia. We have found that Jill Watson enhances
the positives of conversational courseware (such as answering questions
and engaging in conversations anytime and anyplace) and suppresses the
negatives of large language models (such as biases and hallucinations).

Keywords: Virtual Teaching Assistants · Intelligent Tutors ·
Conversational AI Agents · Conversational Courseware · Intelligent
Textbooks

1 Introduction

The growing popularity of online programs in higher and continuing education
[1] has lent much urgency to reducing the gap between the learning experience
of online and in-person learners. Online classes may have hundreds, if not thou-
sands, of students, and they typically deliver educational content asynchronously.
While this dramatically expands the reach of education delivery, it also makes
it challenging for instructors to adequately attend to the learning needs of their
students. Many student questions in an online classroom may go unanswered or
not be answered in a timely fashion. This gap between the online and in-person

This research has been supported by NSF Grants #2112532 and #2247790 to the
National AI Institute for Adult Learning and Online Education. We thank members
of the Design Intelligence Laboratory for their contributions to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 78–90, 2024.
https://doi.org/10.1007/978-3-031-63028-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63028-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-63028-6_7


Jill Watson 79

modes of instruction can impede effective learning by online learners [2,3]; lead
to low student engagement [4]; and adversely impact retention in the program
[5]. Unfortunately, there are no cost-effective means of having enough human
teachers who can answer all questions posed by online students anytime and
from anywhere to alleviate this gap.

Artificial intelligence-based virtual teaching agents (VTAs) can help allevi-
ate the lack of student-teacher interactions in online classrooms if they are easily
scalable and cost-effective [6]. To this end, we have developed a new version of Jill
Watson, a virtual teaching assistant (VTA) that leverages generative AI. With
OpenAI’s ChatGPT at its core, Jill Watson can answer student questions and
engage in extended conversations anytime and anywhere. By itself, ChatGPT
is a conversational agent based on the GPT family of large language models
(LLMs). While ChatGPT has an uncanny ability to answer questions and con-
verse with users with a human-like text, it suffers from two major drawbacks.
First, LLMs underlying ChatGPT are trained on a massive corpus of text data
on the internet, and they implicitly store their knowledge in model parameters.
ChatGPT relies on this knowledge to answer user queries. As such, if used in
a classroom, ChatGPT’s answers may not reflect the instructor’s expectations
based on the class materials, thus failing to support the desired learning out-
comes. Second, LLMs are statistical models that answer a simple probability
question - given a training data set and a string of words, what is the most
probable next word? As a result, LLMs, and hence, ChatGPT, are prone to
hallucinations, i.e., they can generate factually incorrect answers devoid of real-
ity (hallucinations) [7], or even undesirable speech [8]. This in part is where Jill
Watson comes in. Though having ChatGPT at its core, Jill Watson mitigates hal-
lucinations by using retrieval-augmented text generation (RAG) [9] with dense
passage retrieval (DPR) [10] to constrain ChatGPT to answer student questions
using only the class materials provided by the instructor. Further, Jill Watson
also employs moderation to block irrelevant questions from being processed and
to block answers containing harmful speech.

Our work makes several contributions. First, Jill Watson is highly scalable and
optimal for learning at scale. It has been deployed across several classes with up to
several hundred students at multiple institutions. It can answer questions based on
natural language text from instructor-approved documents of any length, includ-
ing textbooks, user guides, transcripts from video lessons, text from presentation
slides, course websites, and class syllabi, schedules, and policies. In theory, given
enough computing infrastructure, there is no limit to the number of classes, stu-
dents, or institutions that can benefit from Jill Watson deployments.

Second, Jill Watson is conversational. It allows students to use a private
chat window enabled as a Learning Tools Interoperability (LTI) [11] tool in
class Learning Management Systems (LMSs) to ask follow-up questions and
converse about course material within the confines of its knowledge base. This
interactivity can motivate students to explore content-related questions; answer
questions related to course-related activities; and prompt reflection on course
content. Thus, Jill Watson may enhance student’s cognitive engagement with
the courseware.
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Third, Jill Watson is appropriate for a classroom setting due to grounding
in the approved instructional material, thereby increasing the trust of the VTA
by both students and instructors. The provenance of its answers is not only
checked for grounding, but they are also filtered through built-in guard rails
against undesirable speech and irrelevant questions.

Fourth, Jill Watson is cost-effective as it relies on pre-trained models along
with RAG to provide relevant answers to student questions while minimizing
hallucinations. The alternative to this is computationally intensive and expen-
sive fine-tuning of underlying LLMs using hard-to-obtain training datasets with
fidelity to courseware. This eliminates the cost of creating proprietary models
while making it easy to incorporate ongoing technological enhancements in the
fast-paced space of LLMs and AI agents.

2 Related Work

The Community of Inquiry model [2,3] points to the centrality of teaching pres-
ence, i.e., the presence of teacher-student interactions in the classroom, to achieve
effective learning outcomes through individual reflection (cognitive presence) and
collaborative construction of knowledge (social presence). Given that provision-
ing adequate teaching presence in online classrooms is often challenging, their
work admits technical intervention through VTAs. VTAs can answer questions
about course logistics and content anytime and anywhere, thereby amplifying
interaction between human instructors and students and hence, increasing teach-
ing presence.

In a first for VTAs, Goel and Polepeddi introduced the original version of Jill
Watson built on top of IBM’s Watson platform in 2018 [12]; hence the name. This
version of Jill Watson answered students’ questions on class discussion forums
of online classes based on a digital library of previously asked questions and
human answers to those questions. However, this version of Jill Watson showed
demographic bias because the data of the previously asked questions skewed
toward majority groups [13]. As a result, the next version of Jill Watson was
constrained to answer questions related only to course syllabi, schedules, and
policies [6]. This Jill Watson not only helped the students by providing them
with a 24/7 question-answering service, but it also supported teachers by offload-
ing routine question-answering and thereby saving precious time. However, the
construction of a Jill Watson agent for a new class was prohibitively expensive
because the need for training it anew on data for the new class required several
tens of hours of manual effort. Further, Jill Watson could only answer a lim-
ited type of questions, and that too standalone questions; it could not engage in
extended conversation. Goel et al. extended this work with a question-answering
AI agent embedded in a natural language user guide to answer questions about
another AI agent [14].

In contrast to versions of Jill Watson grounded in a well-defined corpus of
relevant but limited knowledge discussed above, open-ended question-answering
models such as ChatGPT based on LLMs derive their knowledge from large
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non-specific textual training datasets sourced from across the internet and other
natural language sources. As noted in the previous section, such models may give
answers that are either irrelevant or factually incorrect. These issues are miti-
gated by using retrieval augmented generation (RAG) with LLM-based models
[9]. Very recently, Wang et al. report an implementation of a retrieval-based
chatbot for use in education [15]. While they validate this approach with a set
of 20 questions, they do not report having deployed their VTA in live classes. In
the same vein, Taneja et al. present a conceptual design of the Jill Watson ver-
sion presented here and evaluate its performance using standard datasets while
comparing it to a chatbot constructed using the OpenAI Assistant API [16].

3 Overview of Jill Watson’s Architecture

Unlike previous versions, the new version of Jill Watson is deployed as an LTI
tool in the class LMS and students interact with it through a private chat win-
dow. This affords a private channel of communication between a learner and Jill
Watson. In addition, LTI-based deployments offer easy scalability across several
alternative LMSs such as Canvas and Blackboard.

A Jill Watson agent for a class has a modular architecture with functionality
enabled by three modules - the agent knowledge base, the agent memory, and
the question-answer pipeline.

3.1 Knowledge Base

The first step in generating a Jill Watson agent for a new class is to create its
knowledge base by preprocessing natural language courseware provided by the
instructor as PDF documents or text parsed from the course website. Figure 1
illustrates the document preprocessing step, which is performed before agent
runtime and hence, it does not affect runtime latency. We use the Adobe PDF
Extract API to extract text from the PDF documents. All text is sectioned
into pages which are further divided into paragraphs. The paragraphs are then
grouped into passages of at least 500 characters (about 100 words). There is
a 50% overlap between consecutive passages for redundancy and continuity of
context across passages. The raw text in these passages often has special char-
acters, unwanted spaces, and formatting anomalies. We prompt ChatGPT with
these passages to generate passages with clean text along with a 2-3-word long
header. ChatGPT is also used to generate a summary of the clean text to make
implicit information in passages more explicit. The clean passages along with
their headers and summaries are then served to a text encoder to generate two
sets of embeddings that are stored in the agent knowledge base for later use in
dense passage retrieval.

3.2 Agent Memory

A MongoDB database stores information about agent-student interactions to
serve as a source of student-specific question history for conversation. This elim-
inates reliance on LMS to provide this information. This is important as LMS
often do not store the question history.
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Fig. 1. Jill Watson document preprocessing

3.3 Question Answering

Figure 2 shows Jill Watson’s runtime architecture. The runtime performs the
following functions - Jill-Watson-LMS interaction; co-reference resolution; skill
classification for relevant document selection; question-answering; and modera-
tion. A REST server enables Jill-Watson-LMS interaction by exposing Jill Wat-
son as an API. This allows for integration with any LTI-compatible LMS.

Fig. 2. Jill Watson runtime architecture

Co-reference resolution replaces indirectly referenced entities (pronouns) in
a query with explicit nouns or noun phrases based on the conversation history
[17]. This ensures the continuity of dialog. The resolved query is then input into
a skill classifier to determine the skill required to answer it. Queries that require
content retrieval are forwarded to the Contextual Answering Skill; irrelevant
queries and greetings are trivially answered, respectively, by the Irrelevant Skill
and Greeting Skill.
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Figure 3 illustrates the implementation of Jill Watson’s contextual answering
pipeline. Contextual answering involves answering questions based on relevant
information retrieved from the knowledge base. Jill Watson uses dense passage
retrieval for this task [10]. First, based on the required skill, we retrieve relevant
passages with clean text and their summaries along with their embeddings from
the knowledge base. Second, we compute query embeddings of the co-reference-
resolved queries. Third, we compute the similarity of the query embedding with
context embeddings for each passage as well as its summary text. The similarity
score of a passage is the maximum of the two numbers. Fourth, we sort the
passages in decreasing order of similarity and select k passages with similarity
above a threshold. To improve retrieval accuracy, we introduce a cross-encoder
in our design to re-rank the selected k passages, which are then grouped into
batches of five for prompt construction.

Fig. 3. Contextual answering pipeline

Prompt construction for the question-answering constrains ChatGPT to only
answer student queries if the context has the requisite information, or else,
refuse to answer. Further, it should be able to respond to follow-up questions
to converse. For the latter, we use the conversation history for the current user
extracted from the agent memory. We construct a prompt with the first batch
of passages as context, conversation history, and resolved user query. If Chat-
GPT fails to answer the question using the first batch of passages, we use the
second batch of passages, and so on, until ChatGPT generates a valid answer.
The validity of the answer is checked by prompting ChatGPT. If a valid answer
is not found from any of the batches, Jill Watson lets the student know that it
cannot answer that question based on the provided context.

A textual entailment module checks the response for consistency against
the context retrieved from the knowledge base. The task assesses the logical
relationship between a context (C) and a hypothesis (H), where C entails H,
contradicts H, or is neutral to H. We incorporate these checks to validate whether
context C fully supports the generated answer A. If not, the answer is either
rejected or flagged with a low-confidence warning, prompting users to verify the
answer independently. Our method utilizes ChatGPT for textual entailment,
with instruction-based prompts yielding the highest recall for identifying non-
entailed answers.
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Finally, to ensure safe and relevant responses, Jill Watson checks input
queries and responses for harmful text using the OpenAI Moderation API. The
API allows Jill Watson to detect different categories of harmful text and discard
such text with an appropriate message to the user.

4 Results and Discussion

The current version of Jill Watson has been deployed since Summer 2023 in
several classes at the Georgia Institute of Technology (Gatech) as well as classes
at two community colleges - Wiregrass College and Columbus College - in the
Technical College System of Georgia. Table 1 lists some salient information for
these deployments along with natural language documents that Jill Watson uses
in each class to converse with students. These include instructor handouts, text-
books, lecture transcripts, and text parsed from course websites. Figure 4 shows
the accuracy of Jill Watson’s responses to a large number of synthetically cre-
ated questions for a wide variety of documents used in deployment in alternative
courses. These responses were graded by humans. The accuracy ranges from 75%
to 97%. Lower accuracy is mostly traced to parsing challenges posed by tables
commonly found in syllabi.

Tables 2, 3, and 4 show demographic data for the Fall 2023 Knowledge-based
AI class at the Georgia Institute of Technology and the English class at Wiregrass
College, and they illustrate that the two student bodies have starkly different
gender, age, and ethnicity distributions.

Fig. 4. Accuracy of Jill Watson responses to synthetically created questions for various
documents.
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Table 1. Jill Watson deployments. In addition to the knowledge base components
listed, Jill Watson also answers questions about class syllabus, schedule, and policies.

Semester Institution Course Knowledgebase
components

# Students

Summer 2023 Gatech Human-Computer
Interaction

Course website 385

Summer 2023 Gatech Knowledge-based
AI

E-textbook 216

Summer 2023 Gatech Intro to Cognitive
Science

–Textbook
–Video transcripts

115

Fall 2023 Gatech Knowledge-based
AI

E-textbook 198

Fall 2023 Wiregrass College English:
Composition and
Rhetoric

–MLA Writing Guide
–E-textbook
–Instructor handouts

100

Spring 2024 Gatech Knowledge-based
AI

–E-textbook
–Course website

223

Spring 2024 Gatech Intro to Cognitive
Science

–Textbook
–Video lecture
transcripts

58

Spring 2024 Wiregrass College English:
Composition and
Rhetoric

–MLA writing guide
–E-textbook
–Instructor handouts

60

Spring 2024 Columbus College Leadership Course readings 15

Table 2. Student Gender Distribution

Course (Fall 2023) Female Male

Knowledge-based AI 28.54% 71.46%

English: Composition and Rhetoric 78.00% 22.00%

Table 3. Student Age Distribution

Course (Fall 2023) 17–24 25–34 35–44 45–54 55–64

Knowledge-based AI 12.50% 64.79% 17.08% 4.16% 1.45%

English: Composition and Rhetoric 67.50% 23.50% 6.00% 2.00% 1.00%

Table 4. Student Race/Ethnicity Distribution

Course (Fall 2023) American
Indian/Alaskan
Native

Asian Black/ African American Hispanic/Latino Two or more Unk White

Knowledge-based
AI

0 51.25% 3.54% 6.45% 2.71% 2.50% 33.54%

English:
Composition and
Rhetoric

1.00% 1.00% 40.00% 11.50% 4.5% 0 42.00%
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Table 5. Example of a real student conversation with Jill Watson from the Knowledge-
based AI class in Spring 2024 (conversation has been truncated for brevity). Note the
depth of the conversation between the student and Jill Watson

Turn Student Question Jill Watson’s response

1 Do you have sample questions to quiz about
means end analysis?

Certainly! Here are some sample questions to quiz your
understanding of means-end analysis:
1. What is means-end analysis in problem-solving?
2. How does means-end analysis differ from generate
and test?
3. What is the role of a heuristic in means end analysis?
4. Explain the concept of state spaces [...]
10. Can means-end analysis guarantee computational
efficiency or optimality of the solution? Explain.
If you have any specific questions or need further
explanation on any topic related to means-end
analysis, feel free to ask!

2 Means ends analysis is a universal problem
solving technique. It is not guaranteed to
provide a solution. It attempts to solve a
problem by traversing through a potential
state space [...] Is this correct for the first
one?

Yes, your understanding of means-end analysis is
correct for the first question. Means-end analysis is a
universal problem- solving technique that aims to
solve a problem by reducing the differences or
distance between the current state and the goal state.
It involves traversing through a potential state space
and applying operators or moves to bring the current
state closer to the goal state. [...]

3 Are the operators the potential moves being
generated from a given state?

Yes, that’s correct. In means-end analysis, the
operators refer to the potential moves or actions that
can be applied to a given state in order to progress
towards the goal state. These operators represent the
available actions or transformations that can be
performed on the current state to generate new states.
[...]

4 For question number 2, Means-End-analysis
differs from generate and test because it is
reducing the distance between the current
state and the goal state. To get the states
for means end analysis, the agent will
generate [...]

Yes, you are correct in stating that means-end analysis
differs from generate and test in terms of reducing the
distance between the current state and the goal state.
However, there are a few additional differences
between the two problem-solving approaches: [...]

Table 5 shows a real conversation between Jill Watson and a student in the
Knowledge-based AI class. The student is using Jill Watson to test her skills
and receive Jill Watson’s feedback. This is an example of a student’s deep
engagement with the courseware. What is interesting is that though the student
asks specifically about questions related to means-end analysis, Jill Watson gen-
erates questions for related topics taught in the class. ChatGPT also generates a
good quality quiz to the same question, but it focuses solely on means-end anal-
ysis. This means that Jill Watson, by having access to course content, generates
questions that encourage students to think more deeply about related concepts
in the course. The ability of Jill Watson to support deeper understanding and
critical thinking however requires more investigation.

Table 6 illustrates Jill Watson’s ability to mitigate the hallucinatory behavior
of ChatGPT. When asked about the concept of ’free will’ in the context of
the recommended textbook in the Intro to Cognitive Science class, Jill Watson
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Table 6. Example where ChatGPT hallucinates an entire response but Jill Watson
does not. The entirety of the ChatGPT response is a hallucination.

Question: How does Thagard explain the concept of ‘free will’ within
the frameworks he discusses in his book “MIND: Introduction to
Cognitive Science”?

Jill Watson: Thagard does not explicitly discuss the concept of
“free will” within the frameworks he discusses in his book “MIND:
Introduction to Cognitive Science.” The book primarily focuses on
explaining various aspects of intelligent behavior and the different
approaches to modeling the mind. Thagard’s emphasis is on
understanding the nature of the mind and the cognitive processes
that underlie intelligent behavior, rather than delving into
philosophical concepts such as free will.

ChatGPT 3.5: In his book “MIND: Introduction to Cognitive
Science,” Thagard addresses the concept of free will within the
context of cognitive science, exploring how cognitive processes give
rise to our sense of agency and decision-making. Thagard’s approach
to free will in “MIND” is consistent with his broader views on
consciousness and cognition, emphasizing the role of neural
mechanisms and computational processes in shaping human
behavior. While “MIND” covers a wide range of topics in cognitive
science, including perception, language, and reasoning, Thagard’s
discussion of free will typically focuses on the following key points:
[...]

maintains fidelity to the source material, responding that there is no explicit
mention of ’free will’ while ChatGPT’s elaborate response consists entirely of a
hallucination and is not grounded in the actual content of the textbook.

Table 7 presents sample student comments gathered from the class discussion
forums and surveys to gauge student perceptions regarding Jill Watson. The
comments are reproduced without any editing, and they illustrate a positive
student experience on the whole.

We close this section with two preliminary observations from the Knowledge-
based AI class in 2023 indicating that access to Jill Watson may positively impact
student performance. All students in this class were asked to consent to partic-
ipate in an A/B experiment to measure the impact of Jill Watson on teaching
presence using the Community of Inquiry instrument [18]. Those who consented
to participate were randomly assigned to treatment and control groups. The
treatment group was given access to Jill Watson, while the control group was
not. The impact on teaching presence will be published elsewhere; we report here
other important results. Figure 5 shows the proportion of students receiving final
grades of A and C in the two groups. The proportion of students with an A in the
treatment group is 3.9% higher than that in the control group; the proportion
with a C in the treatment group is 4.4% lower than that in the control group.
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Table 7. Student comments on Jill Watson from class discussion forums and surveys.

Student A: Does Jill provide any course content related answers?
Student B: Yes, it does. It can answer questions like “What’s
common sense reasoning?”

Student A: Can you ask Jill how to do assignments and projects
then? Student B: Yes, it will give you step by step general
instructions on how to approach the assignment. It won’t provide
any extra information that’s not already present in the assignment
description.

Student C: The Jill Watson upgrade is a leap forward. With
persistent prompting I managed to coax it from explicit knowledge
to tacit knowledge. That’s a different league right there, moving
beyond merely gossip (saying what it has been told) to giving a
thought-through answer after analysis. I didn’t take it through a
comprehensive battery of tests to probe the limits of its capability,
but it’s definitely promising. Kudos to the team.

Student D: +1 really like the upgrade - I am using it to actually
learn the lecture material. One feature request would be to persist
the conversation, I had closed the tab and lost my prompts. Again,
kudos!

Student E: Jill helped me find out where I needed to go when I was
lost on blackboard.

Student F: I often times need assistance with finding certain
assignments and Jill Watson is very helpful with directing me
towards the right place.

Note that while this is a promising result, the statistical significance of this one
data point and Jill Watson’s causal relationship with it is undetermined.

We also compare the mean final raw score for those students in the treat-
ment group who interacted with Jill Watson at least three times with that for
students in the same group who did not. The mean scores are 91.4% and 86.6%,
respectively, for the two populations. The probability that the null hypothesis
that the two populations have identical mean values is true is p = 0.007, which
is a statistically significant difference at the p < 0.05 level.
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Fig. 5. Grade distribution in Knowledge-based AI in Fall 2023 class

5 Conclusion

We presented a highly performant and scalable conversational virtual teaching
assistant, Jill Watson, based on the GPT family of LLMs. Jill Watson is resis-
tant to hallucinations. It answers student questions and engages in extended
conversations based on instructor-approved courseware anytime and anywhere
using safe language, thus supporting both students and instructors. It has been
deployed in several classes at the Georgia Institute of Technology and in two
community colleges with about 1300 students. Qualitative feedback by students
shows an encouraging level of engagement with the AI agent. We see preliminary
evidence that Jill Watson may support deeper understanding of the subject mat-
ter but this needs to be investigated further. We also see preliminary indication
that Jill Watson positively impacts student performance but this too needs to
be explored further.
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Abstract. LLMs trained in the understanding of programming syntax are now
providing effective assistance to developers and are being used in programming
education such as in generation of coding problem examples or providing code
explanations. A key aspect of programming education is understanding and deal-
ing with error message. However, ‘logical errors’ in which the program operates
against the programmer’s intentions do not receive error messages from the com-
piler. In this study, building on existing research on programming errors, we first
define the types of logical errors that can occur in programming in general. Based
on the definition, we propose an effective approach for detecting logical errors
with LLMs that makes use of relations among error types in the Chain-of-Thought
and Tree-of-Thought prompts. The experimental results indicate that when such
logical error descriptions in the prompt are used, the average classification per-
formance is about 21% higher than the ones without them. We also conducted an
experiment for exploiting the relations among errors in generating a new logical
error dataset using LLMs. As there is very limited dataset for logical errors such
benchmark dataset can be very useful for various programming related applica-
tions. We expect that our work can assist novice programmers in identifying the
causes of code errors and correct them more effectively.

Keywords: Logical Error · Programming Education · LLMs

1 Introduction

In recent developments in Natural Language Processing (NLP), Large LanguageModels
(LLMs) have evolved to understand and infer the meaning of sentences or documents,
allowing them to grasp context and understand the relationships between words more
accurately. Such approach has significantly boosted the performance of LLMs in various
NLP tasks, leading to technical advancements in each NLP domain [1]. In programming,
LLMs focus on understanding the workings of source code and performing tasks such as
code analysis and autocompletion. Recently, variousLLMs, such as codex and codellama
[2, 3], have emerged, enhancing the understanding of programming syntax to assist
developers in their tasks more efficiently.
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While these LLMs serve developers’ convenience, there is also the potential for
their use in coding education for beginners. For example, students can use LLMs to
generate solutions for practice problems not provided by instructors, facilitating more
opportunities for code learning [4]. Currently, LLMs are primarily used for code gen-
eration [6] and explanation [7]. However, a crucial aspect of programming education
is understanding and addressing programming error messages [5]. Understanding the
process of interpreting and resolving error messages is necessary to facilitate efficient
code learning.

Fig. 1. The answer is incorrect, but no syntax error occurs when running; (a) is a programming
problem that the user must solve; (b) is the incorrect answer code with a Condition Error.

When writing programming code, one particular type of error that requires special
attention is logical error. Logic error refers to an error in which a program operates
differently from the intention of the program writer and outputs an incorrect result. The
significance of logical errors stems from the fact that, unlike compile errors, it is difficult
for the novice programmer to self-correct. In the case of syntax errors, the compiler
provides error messages, making it feasible to produce corrections. Simply following
the code andmaking fixes enhances the ability to self-debug. However, for logical errors,
often times there is no clear error message provided. Therefore, the debugging process
involves understanding what the code does, identifying its functionality, and comparing
it to the intended process. Novice programmers find this process challenging. Figure. 1
illustrates such a scenario where the C++ code written in (b) behaves differently from
the intended purpose in (a). It is a problem that a program that outputs "Yes" when a
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specific condition is satisfied by comparing the sizes of the input three integers must be
implemented. In (b), the output was wrong by setting the condition differently from the
part referred to in (a). That is, the error that occurred in Fig. 1 is due to a Condition Error.
However, as it is syntactically correct, no error messages are received from the compiler,
and the debugging process mentioned above becomes necessary. Detecting such errors
and developing an approach for assisting the user holds educational potential [8].

In this paper, building on existing work on program analysis, we first divide the types
of errors into ten categories and establish their respective concepts for the purpose of
classifying logical errors more clearly. We then identify potential areas of confusion by
understanding the relationships between errors and set an ordering in resolving them.
Based on the defined concepts and relationships of errors, we propose a new approach
for detecting logical errors with LLMs that makes use of relations among error types
in the Chain-of-Thought (CoT) [12] and Tree-of-Thought (ToT) [13] prompts. We also
undertake the task of generating specific logical error data from the correct code. The
contributions of this paper include 1) defining the type of logical error and described the
relationship between the types; 2) analyzing relationships between logical error types
and reflecting them in LLM prompts, allowing the LLM to clearly distinguish between
error types; 3) demonstrating effectiveness of the approach through an experiment where
the classification accuracy increases by 21%.

2 Related Works

2.1 Automated Program Repair

Existing research on errors in source code has predominantly followed the Automated
Program Repair (APR) paradigm [9, 16]. One notable example is [9], which introduces
a method for fixing a broken program based on compiler-provided error messages. The
model generates the corrected lines when given a program with errors along with the
corresponding error messages. The work represents the errors and the error messages
from the compiler in a graph format, enabling the model to modify multiple lines of
code. Moreover, to address the data scarcity issue, the researchers intentionally broke
programs for which labels did not exist, obtained error messages from the compiler.
However, the approach cannot handle logical errors that do not come with specific error
messages, and its focus on code recovery prevents users from understanding the root
cause of errors. This paper aims to classify types of logical errors occurring in the code
to enable users to understand the reasons behind the errors.

2.2 Teaching Programming to Beginners: An Instructor’s Perspective
on Educational Environment

When teaching coding to beginners, instructors often face the challenge of repeatedly
explaining the same errors [14]. During practical sessions, students may spend consider-
able time fixing simple errors and inadvertently introduce repetitive mistakes. However,
due to the large number of students compared to instructors in labs, individual students
may need more frequent assistance from instructors. Students are often left to resolve
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errors independently, relying on error messages for guidance. While compile-time or
runtime errors can be addressed to some extent by interpreting compiler-provided error
messages, logical errors, which deviate from the intended behavior, often lack explicit
error messages, making debugging a particularly upsetting experience. To alleviate these
challenges, [17] introduces a prospective solution to enhance the performance of intel-
ligent programming education systems by providing personalized feedback to learners.
This study suggests a prospective resolution tomitigate the aforementioned issues. LLMs
takes the programming problems as input attempted by students and the submitted code.
It then identifies the types of logical errors present and provides this information as
output, enabling students to understand the root causes of their errors independently.
Understanding error messages is crucial for effective programming learning [5], and use
of LLM based approaches could benefit programming novices.

3 Definition of Logical Error Types

In the past, there has been research on a classification system for common logical errors
made by novice programmers [10]. The 11 error classifications explained in [10] list
examples for each error type. However, a clear definition of the error type is not fully
provided. In our research, we first present a definition of individual errors Table 1 for
classification of logical errors. In order to cover logical errors in diverse programming
languages, components of specific grammar such as class programming were excluded.
The classification system we reconstructed can be applied to languages such as C, Java,
and Python.

The ‘(11) Miscellaneous’ category of errors defined in [10] encompasses issues
arising from incorrectly placed semicolons or minor typos. These errors resemble com-
pilation errors, but they can also be logical errors. When semicolons are misused, the
compiler can interpret it as a long sentence. Also, typos in variable names can mislead
the compiler. In such cases, it is difficult to set clear criteria and can be easily confused
with other types of errors, so the category has been excluded from consideration.

Next, we created a view Fig. 2 to intuitively present the occurrence positions in the
code and the relationships among the ten logical errors. Here, each type of logical error
is represented as a node with the Type ID defined in Table 1 written on it.

We classified the structure of programs into ‘Input’, ‘Process’, and ‘Output’, accord-
ing to the IPO pattern that many simple programs follow [15]. Subsequently, we distin-
guished the part used for declaration and initialization in Process and classified logical
error types into four major groups: (1) Input, (2) Process: Declaration & Initialization,
(3) Process: Remaining, and (4) Output. And we separated the relationships between
errors into casual and coincidence relationships.

Casual relationships are represented by the sequence of the structure of programs
‘Input’, ‘Process‘, and ‘Output‘. If an error occurs in one step, it may lead to subsequent
errors in the following steps. For instance, if a program receives incorrect input in (1)
Input, it can trigger errors in (2) Process: Declaration & Initialization, (3) Process:
Remaining, and (4) Output. These casual relationships can obscure the logical error that
needs to be classified, as one error can lead to another.

‘Coincidence’ relationships refer to when the criteria for classifying an error occur-
rence into a certain error type are ambiguous because the conceptual meaning of two
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Table 1. Group types commonly occur while writing a code; Column 1 and 2 are list error types
and names; Column 3 provides a description and examples of the error type

Type Category Description and occurrence examples

(A) Input Errors arising from the inability to properly store input values properly
1. When not all given input values are received
2. When the data type of the variable the input value is incorrect

(B) Output Errors arising from non-compliance with the required output format
1. When the output format of the value in the variable is incorrect
2. When an incorrect string literal is output

(C) Variable Errors arising from incorrect use of variables
1. When the value stored in the variable is incorrect
2. When the data type of the variable is incorrectly specified

(D) Computation Errors caused by incorrect calculations
1. When calculating using incorrect values
2. When calculating using incorrect operations

(E) Condition Errors caused by incorrect use of conditional statements
1. When the conditional operation in the declaration part of the

conditional statement is incorrect
2. When the condition in the declaration part of the conditional

statement is insufficient

(F) Branching Errors caused by incorrect branching of the program
1. When the break in the loop is written incorrectly
2. When a conditional statement that should be written as if-else is

written as if-if

(G) Loop Errors caused by incorrect use of loops
1. When the condition in the declaration part of the loop is incorrect
2. When the variable used in the declaration part of the loop is incorrect

(H) Array/String Errors caused by incorrect arrays or strings
1. When arrays or strings are initialized incorrectly
2. When referencing an incorrect index when using an array or string

(I) Function Errors caused by incorrect user-defined functions
1. When the parameters or return values of user-defined functions are

incorrectly defined
2. When the arguments are incorrect when calling user-defined functions

(J) Conceptual Errors caused by incorrect concepts for problem-solving
1. When solving a different problem than the one presented
2. When the necessary loops or conditional statements are not written to

solve the presented problem

errors overlap. For example, an incorrect operation written in the declaration part of a
conditional statement falls under both the Computation error and Condition error cate-
gories. If the existence of the conditional statement itself is incorrect, it also falls under
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Fig. 2. Relationship diagram for types of logical errors; (a) divides error types into four areas and
displays the relationships between the types in a graph form; (b) refers to the element in the graph
of (a).

the Conceptual error category. These coincidence relationships can make the criteria for
error classification unclear.

In Fig. 2, you can check the casual relationships according to the (1), (2), (3), and (4)
groups where the nodes are located and the coincidence relationships through the edges
between each node. You can also see the typical cases where coincidence relationships
occur through the meanings of each edge. In this case, (J) Conceptual error can occur,
overlapping with all other errors conceptually, so we depicted it as a node with two
external lines.

Distinguishing and defining error types based on these casual and coincidence rela-
tionships enables us to identify potential confusion when multiple errors could be
blended. This confusion can create ambiguity, making it difficult to pinpoint a sin-
gle logical error in the code or leading to incorrect error classification. Providing clear
criteria for such ambiguities enhances error classification performance using LLMs. Par-
ticularly, as seen in Fig. 2, there are complex coincidence relationships between nodes
(D), (E), (G), (H), and (I). Therefore, it‘s essential to distinguish the criteria for this area
clearly.

While we can specify which error will occur in each relationship to define the rela-
tionships between errors, setting and remembering this for all relationships is challeng-
ing. Therefore, we assign occurrence priorities to each error to be more applicable in
general cases. To ensure convenience, we initially set the highest ordering for (J), which
can overlap with all errors and concepts. Then, based on the casual relationships of the
errors, we establish the order of arrangement as (J)> (A), (C)> (D), (E), (F), (G), (H),
(I)> (B). Subsequently, we adjust the ordering of errors with clearly defined occurrence
points among those having coincidence relationships, resulting in the order of arrange-
ment (J)> (A)> (C)> (H)> (I)> (E)= (G)> (D)> (F)> (B). This approach allows
us to identify the highest-ranked error when classifying a single logical error to which
multiple concepts apply, thus helping to avoid ambiguous situations. Therefore, LLMs
can classify logical errors on a more precise basis. Through this, we can inform novice
programmers of the incorrect logic in the code more accurately.
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4 Classification and Augmentation Using LLMs

The structure of the data used for classification is as follows. The labeling format is
binary, with a value of 1 indicating the presence of the corresponding error type in the
code and 0 indicating its absence. The distribution of the collected data is presented in
Table 2. The data can be access on GitHub.1

Table 2. Distribution of logical error types collected for classification. The first row is the logical
error type, and the second row is the number of data per logical error type.

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

10 10 5 9 12 8 10 8 8 6

Additionally, the data used for augmentation was only the code data that had been
‘Accepted’ as the correct answer for problems in the Introduction to Programming 1
(ITP 1) course.

4.1 Logical Error Classification Prompt

Fig. 3. This is the overall structure and process for classifying logical error types from incorrect
answer codes.

We constructed a pipeline to observe the logical error classification performance of
LLMs. Figure. 3 illustrates the process of the LLM classifying logical errors based on
the provided information.

The Error Classification Prompt is composed of ‘Explanation of background knowl-
edge’, ‘Description of one error’, ‘Few-shot examples for CoT’, ‘Instruction’, ‘Code
with a logical error’, ‘ToT Prompt’ and ‘Question & Output Indicator’.

1 https://github.com/SChaeck/llm-logical-error-detection.

https://github.com/SChaeck/llm-logical-error-detection
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The ‘Explanation of Background Knowledge’ section explains the model of what
a logical error is and lists the names of ten errors that will be used as classification
criteria. This gives the LLM preliminary information on what task it needs to perform.
‘Description of one error’ uses ten descriptions written based on the concept of errors
defined in Table 1 to describe each type of logical error. As only one error content exists
in a single description, it’s impossible to inform the LLM of the concept of all errors.
Therefore, by writing about the restrictions on the occurrence of the described error, we
have expressed its relationship with other errors. Through this, we provided cases where
the concept of the error applies but should not occur. ‘Few-shot examples for CoT [12]’
provides instances for each error type. Each example consists of three average shots for
each type of error. This helps the LLM distinguish the ten error types and understand
where to focus. In ‘Instruction’, it asks the LLM if the previously explained error types
exist in the code. ‘Code with a logical error’ is formatted as in Fig. 1, consisting of the
problem the programmer wants to solve and the incorrect code for that problem. Finally,
ToT prompts [13] are written to facilitate three experts sharing their thoughts step by step
andproviding feedbackon eachother’s ideas, followedby ‘Question&Output Indicator’.
This enhances the accuracy of answers for complex errors that require inference.

Therefore, when one incorrect code is input, it generates ten prompts that verify
different errors for this code, prompting the LLM with questions. Only the description
changes during this process, while the rest remains unchanged. The LLM explains the
inference process for each of the ten prompts and responds with Yes/No, indicating
whether the specific error is present. This allows for identifying which logical errors
exist in a given code.

4.2 Logical Error Augmentation Prompt

Fig. 4. Process and configuration of generating a code in which a logical error occurred from
code with an ‘Accepted’ judgment.

We proposed a methodology for constructing a logical error dataset by creating
augmentation prompts to induce specific logical errors from correct answer data. The
overall process is illustrated in Fig. 4.

The augmentation prompt consists of an ‘Explanation of background knowledge’,
‘Description of Ten Anonymized Errors’, ‘Code without logical error’, ‘Instruction’,
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‘Augmentation Remarks of Possible Errors’, and ‘Output’ format induction phrase’. In
the ‘Explanation of background knowledge’ of the augmentation prompt, unlike the
classification prompt, we explained what logical errors are. This was done as each
error’s enumeration is described with explanations in the subsequent ‘Description of
TenAnonymizedErrors’. The ‘Description of TenAnonymizedErrors’ provides detailed
descriptions and scenarios for each error, using alphabet anonymization instead of direct
names for all ten errors. This prevents augmentation based on the content of each error
stored in the parametric memory, enabling a focus on the error classification concepts
defined in the research. For instance, to avoid focusing solely on the term ‘Input error’
rather than the ‘explanation for the Input error’, the error type is provided to the LLM in
the form of (A). Also, by providing the ordering of anonymized errors and explanations
about the order, we ensured that the LLM considers the relationship between errors,
preventing augmentation with incorrect errors. ‘Code without logical error’ comprises
problem descriptions and correct code, similar to Fig. 1 (a). The instruction assigns
the task of augmenting while including common mistakes novice programmers make.
‘Augmentation Remarks of Possible Errors’ only requests errors that can be augmented.
Given the varying difficulty levels and unused syntax in the collected dataset problems,
potential errors are compiled, and ‘AugmentationRemarks of PossibleErrors’ are created
based on the ‘Code without logical error’ problems. In ‘Output format induction phrase,’
the LLM is instructed to provide a JSON-formatted response. Subsequently, the LLM
returns the code containing logical errors in JSON format based on the input prompts.
This approach allows the construction of a dataset containing logically erroneous code
examples. Augmentation results can be checked in Fig. 5.

Fig. 5. Generation of code inwhich a specific logical error occurred from codewith an ‘Accepted’
judgment; (a) is the problem we want to solve; (b) is code for ‘Accepted’ judgement; (c) is code
where a logical error was generated.

4.3 Experimental Results

Method of Collecting Experimental Data. The labeled logical error dataset was rel-
atively limited, requiring us to collect and label additional data manually. Then, from
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the data collected, we only utilized those labeled with the agreement of two annotators.
The labeled data was used to evaluate the accuracy of Large Language Models (LLMs)
in classifying logical error types and for augmentation tasks. The raw data was col-
lected from the programming problem-solving platform AOJ (Aizu Online Judge) [11].
Specifically, we focused on problems from the ITP 1 course, which is part of AOJ’s
introductory programming courses. When users submit their solutions to programming
problems and the system evaluates them, the submission information, including submis-
sion ID, submitter, submission status, and submission code, is stored on the server. This
data is publicly accessible in API format.

Results. Looking at Table 3, we can see that the classification accuracy improves
when a description is provided for errors, compared to when the description is not
provided. When utilizing GPT-3.5-turbo, the classification accuracy for the prompts
labeled ‘Description not provided’ was 35%. However, for the prompts categorized
under ‘Description provided,’ the accuracy improved to 56%, indicating a 21% increase
in classification performance. Additionally, we observe that the classification accuracy
improves as the model’s parameter increases. The performance improvement of GPT-
4 compared to GPT-3.5-turbo is attributed to the difference in inferential capabilities
based on the model’s size. It is presumed that GPT-4 better understands the criteria for
errors and can deeply contemplate changes caused by code execution. The False Posi-
tive Rate (FPR) is the ratio of instances where ‘Yes’ is output for incorrect errors when
classifying the ten prompts generated from a single code. As errors are more effectively
distinguished and classified, the FPR decreases. Therefore, the clearer the limitation of
the error written in the description, the more distinguishable the relationship between
errors will be, and the FPR will decrease. Additionally, this reduction can be seen in
association with the improved inferential capabilities of the model.

Analyzing the results of GPT-4, we find that despite having relatively high infer-
ential capabilities, it struggles to easily detect errors in areas that conceptually need
more clarity, such as ‘Computation error,’ ‘Branching error,’ and ‘Conception error.’
‘Computation error’ often occurs in places with incorrect operations, ‘Branching error’
in locations with incorrect branching, and ‘Conception error’ where the logic is flawed.
Such abstract descriptions can confuse the LLM, making it challenging to understand
which part of the code requires attention. On the other hand, errors clearly classified as
‘Input error,’ ‘Output error,‘ >Variable error,‘ ‘Condition error,’ and ‘Loop error’ have
well-defined locations, namely in the input statement, output statement, variable cre-
ation, condition statement declaration, and loop declaration, respectively. This indicates
that the model can easily classify errors occurring only in specific parts of the code but
struggles with errors present in ambiguous areas.

In Table 4, the augmented results are shown in Sect. 4.2. A total of 111 code sam-
ples were augmented using gpt-3.5-turbo. ‘Right Augmentation“ refers to cases where
augmentation for a specific type of logical error was done correctly. The rest fall under
‘Wrong Augmentation,’ which is further divided into ‘Other type of logical errors’ and
‘Not a logical error.’ ‘Other type of logical errors’ pertains to cases where the code was
generated with logical errors not requested. In contrast ‘Not a logical error’ denotes
cases where a compilation error occurred, or the code provided the correct answer.
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Table 3. Logical error classification results

Error Type GPT-3.5-Turbo GPT-4

Description not provided Description
provided

Description
provided

Acc Acc FPR Acc FPR

Input 20% (2/10)) 50% (5/10) 0.06 100% (10/10) 0.1

Output 20% (2/10) 80% (8/10) 0.1 100% (10/10) 0.08

Variable 40% (2/5) 60% (3/5) 0.22 100% (5/5) 0.12

Computation 67% (6/9) 44% (4/9) 0.12 55% (5/9) 0.12

Condition 50% (6/12) 67% (8/12) 0.25 92% (11/12) 0.125

Branching 38% (3/8) 50% (4/8) 0.188 63% (5/8) 0.188

Loop 50% (5/10) 50% (5/10) 0.18 100% (10/10) 0.1

Array/String 25% (2/8) 50% (4/8) 0.138 88% (7/8) 0.275

Function 25% (2/8) 63% (5/8) 0.038 88% (7/8) 0.075

Conceptual 0% (0/6) 33% (2/6) 0.167 67% (4/6) 0.15

AVG 35% (30/86) 56% (48/86) 0.145 86% (74/86) 0.13

Overall, a higher augmentation success ratewas observed for errors that are relatively
easier to transform, such as (A) Input, (B) Output, and (J) Conceptual error. In contrast,
for errorswith lower ordering, like (D)Computation and (F) Branching error,more codes
augmented into different errors were observed than the number of correctly generated
codes. Interestingly, (E) Condition error showed a very low success rate, with 5 out of 8
‘Not a logical error’ cases resulting in compilation errors and 2 cases producing the same
code as the original. This suggests that appropriate prompt engineering could improve
the success rate.

Table 4. The result of augmentation with a specific type of logical error

Error Type Number of
Augmented Codes

Right
Augmentation

Wrong Augmentation

Other type of logical
errors

Not a logical error

Input 10 9 1 0

Output 13 11 1 1

Variable 10 4 2 4

Computation 10 1 6 3

Condition 10 1 1 8

(continued)
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Table 4. (continued)

Error Type Number of
Augmented Codes

Right
Augmentation

Wrong Augmentation

Other type of logical
errors

Not a logical error

Branching 12 3 4 5

Loop 12 5 2 5

Array/String 11 4 2 5

Function 10 4 2 4

Conceptual 13 7 3 3

Total 111 49 24 38

Anadditional 73 code sets consisting of 49 "RightAugmentation" and 24 "other types
of logical errors" can be utilized to evaluate the performance of the error classification
model.

5 Conclusion

In this paper, we defined ten concepts of logical error types based on prior research
and set an order to eliminate potential confusion from understanding the relationship
between errors. Then, based on these clearly defined errors, we instructed GPT to clas-
sify these errors using CoT and ToT techniques, and evaluated its performance using
a manually created dataset. Additionally, we proposed a methodology for creating a
benchmark dataset by augmenting the correct code to generate logical errors using each
error’s definition. We also observed that as the model parameters increased, the infer-
ence performance improved, and a clearer redefinition of error types led to a higher
classification performance.

Limitations. The limitation of this research lies in the insufficient consideration given to
the unique characteristics of each programming language, as the newly defined category
of logical errors has been applied across various programming languages. This makes
it challenging to detect logical errors resulting from the misuse of language-specific
syntax, such as class-based programming or pointers. Therefore, a more specialized
approach that considers these language-specific characteristics is needed.
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Abstract. Teacher-led lessons can successfully convey concepts depending on
the teacher’s preparation. However, it is challenging to convey a specific concept
in an online environment without a well-designed learning path to guide students.
Learning paths allow students to backtrack the prerequisite content from a specific
lesson in which they are weak or skip to related content in which they have a strong
understanding, resulting in efficient learning. Knowledge maps, as the basis of
personalized learning paths, can be generated from educational data by deriving
prerequisite relationships between two knowledge concepts. We have aimed to
enhance knowledge maps by adding the prerequisite relationships obtained by
applying deductive reasoning to previous maps. Using test data from Company D,
we first generated prerequisite relationships using the least absolute shrinkage and
selection operator, random forest, and hidden Markov model for three datasets of
the company. Next, we derived additional prerequisite relationships by applying
deductive reasoning. The results showed that the knowledge maps of the three
datasets had accuracies of 59%, 55%, and 84%, respectively, which were 3%,
10%, and 4% higher than those of the prior maps. As a result, “at risk” students
can perform better using the enhanced knowledge maps by applying deductive
reasoning.

Keyword: Deductive Reasoning · Knowledge Map · Knowledge Concepts ·
Learning Path

1 Introduction

The World Education Forum (2020), a framework for “Education 4.0,” introduced a
novel learning technique that suggests a new educational paradigm involving advanced
technology and automation connected to Industry 4.0. As artificial intelligence (AI) and
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big data are being applied to education, online education has played a crucial role in
society, implying that the educational environment is evolving into a fully or partially
online format [1].

In this era, the power of machine learning (ML), including deep learning, to predict
future scores based on learning histories has been frequently touted in the field of edu-
cation [2]. However, the application of AI or ML in the online learning environment can
become ineffective if the learning path created for leading students lacks the appropriate
design. This is because teacher-centered lessons focus on curriculum-prepared content
delivery, whereas student-centered e-learning lessons focus on delivering the relevant
knowledge that the students need at the time [3].

This paper demonstrates that already existing AI-generated learning paths can be
enhanced using logic development methods. Our contributions are twofold. First, we
have implemented deductive reasoning techniques in an educational setting to refine
learning pathways for academic techniques. Second,we introduce a backtrackingmethod
aimed at supporting at-risk students. This approach has potential to provide tailored
educational strategies that better meet the needs of individual students.

The remainder of this paper is organized as follows. Section 2 reviews the existing
research results on determining prerequisite relations, deductions, and the extension of
causality. In this study, the deductions were usually related to the syllogism. Section 3
discusses the methodology based on these concepts, and Sect. 4 presents the results of
applying the methodology to experimental data. Finally, Sect. 5 concludes the study and
offers directions for further research.

2 Related Work

Establishing a well-organized learning sequence as an educational content bundle is
essential for efficient non-face-to-face learning. After sharing the research on creating a
relationship based on the causal concept relationships between themethods of generating
learning paths, we introduce syllogism to extend the existing relationships identified in
the learning path.

2.1 Bregman Iterative Approach

Decision from a Range of Conditional Probability Values. Chen et al. [4] presented
the KnowEdu system, which introduces a method for extracting KCs from educational
materials and determining the prerequisite relationships for concepts that satisfy a pre-
defined probability formula. The method for determining the prerequisite relationship
follows the procedure described below:

a. Textbooks, educational materials, and other materials were converted into digital data
using conditional random field model [5], and the main concepts were extracted.

b. The mastery statuses of the extracted concepts were expressed as 1 or 0 to obtain
conditional probability values. For example, if concepts A and B are derived in the
concept extraction step, the conditional probability values of Eq. 1 and Eq. 2 are
obtained from the learning evaluation dataset.
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p(A = 1|B = 1) ≥ α (1)

p(B = 0|A = 0) ≥ α (2)

c. If these conditional probability values satisfy a predetermined threshold (i.e., the
probability of knowing conceptA if concept B is known exceedsα, and the probability
of not knowing concept B if concept A is unknown exceeds α), then a prerequisite
relationship A → B exists. This relationship can help students focus on essentials.
Moreover, Hwang et al. [6] introduced this feature to help students focus on essentials.

Reference Distance (RefD). Wang et al. [7] presented a link-based RefD method that
measures antecedent and consequent relationships in learning.Weconsider twoconcepts,
AandB. IfA refers toB inmanycases andB refers toA in a fewcases, then the probability
of B → A is high. Therefore, RefD is defined as follows:

RefD(A,B) =
∑k

i=1 r(ci,B) · w(ci,A)
∑k

i=1 w(ci,A)
−

∑k
i=1 r(ci,A) · w(ci,B)

∑k
i=1 w(ci,B)

(3)

where

C = {c1, · · · , ck}: concept space
w(ci,A): importance to A of the concept ci
r(ci,A): an indicator whether ci refers to A
A: books, papers, and other materials

Liang et al. [8] explained that hyperlinks, citations, and notes that are often used
daily are examples of references.

Using Latent Dirichlet Allocation (LDA). Roy et al. [9] developed a supervised learn-
ing approach called PREREQ to identify the concept prerequisites. Each concept consists
of a combination of topics; therefore, a pairwise-link LDAmodel [10] identifies the pre-
requisite of individual concepts. After creating a model using a dataset, a neural network
classifier determines the prerequisites for concepts with unknown prerequisites.

2.2 Deduction and Syllogism

The simplest example of deductive reasoning is syllogism [11]. In deductive reasoning,
only a specific conclusion is drawn from a general premise, whereas syllogism includes
drawing a logical conclusion as well from the general premises. Syllogisms rely on
two premises to draw conclusions. In this process, the true premise guarantees that the
conclusion is also true. Recall a common historical syllogism:

Premise 1: Socrates is a man (P → Q)
Premise 2: All men are mortal (Q → R)
Conclusion: Socrates is mortal (P → R)
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In other case, if a patient presents with fever, then a doctor considers that he has an
infection; and if a doctor knows that the infection requires antibiotics, then the same
conclusion can be drawn using this reasoning to prescribe antibiotics when the patient
has fever [12]. This example can be expressed using the propositional formula as:

Premise 1: Fever implies infection (P → Q)
Premise 2: If there is an infected patient, a doctor prescribes antibiotics (Q → R)
Conclusion: If a patient has fever, the patient needs antibiotics (P → R)

2.3 Expansion of Causality

Giannotti et al. [13] illustrated the use of supermarket sales data to expand or strengthen
association rules using inductive and deductive methods. Associations (e.g., beer and
diapers are likely to appear in the same basket [14]) are useful for explaining different
buying habits, but are often too rare for practical use. Therefore, it is efficient to consider
the combined results of ARM and deductive reasoning. By extending this work to the
upper level, the rules of the lower level can be inferred from the updated rules. By
expanding the relationships between products from the results of market basket analysis,
the KC relationships leverage the rules of “a → b and b → c, then a → c” based on
deductive reasoning, and the function of automatically calculating and displaying the
probability of the prerequisite relationships defines the relationships more clearly.

2.4 Learning Path and Knowledge Concept Maps

Muhammad et al. [15] proposed that recommending a learning path suitable for students
practically applies to improving the quality of online learning. Quality enhancement is
possible by utilizing the benefits of learning paths. The main advantage of learning paths
is that successive relationships between knowledge concepts (KCs) is defined according
to the order of knowledge acquisition. This supports the study of learning content for a
specific lack of content through backtracking. Moreover, if a specific learning content
is sufficiently understood, then skipping related content enables efficient learning [16].

Chen [17] proposed a personalized e-learning system that extracts incorrect response
patterns from learners’ test results and constructs optimal learning paths. Gasparetti et al.
[18] introduced a method that selects the learning object (LO) with the least difficulty
associated with incorrectly answered test items as the start of the learning path and then
uses a genetic algorithm to generate a learning path for an individual learner. Cai et al.
[19] proposed a knowledge-tracing method that modeled learners’ knowledge levels
over time to accurately predict their learning situation. They also proposed a learning
path recommendation algorithm based on a knowledge-tracingmodel and reinforcement
learning. Siren and Tzerpos [20] used an ML classifier algorithm to extract keywords
and automatically classified them to extract LOs; they then employed concept map data
to generate learning paths containing two types of information—prerequisites and sim-
ilarity. Alternatively, Choi and Lee [21] used the least absolute shrinkage and selection
operator (LASSO) [22] as well as random forest (RF) [23]—which are variable selec-
tion techniques and supervised ML algorithms [24]—to obtain the relationship between
knowledge components (KCs). Subsequently, a precursor between two KCs was deter-
mined by applying the hidden Markov model (HMM) [25]—a time-series model that
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concerns hidden and observed states—to generate a knowledge map based on learning
paths generated from the prerequisite relationships between two LOs [26].

The research direction on learning paths or knowledge maps identified in the above
cases implies that studies do not rely on a given curriculum, but they attempt to model it
based on input data by considering the concept of causal relationships and probability.
However, these studies present a disadvantage—they found a relationship between KCs
[27, 28] only based on data as units of knowledge. Thus, creating a learning path or
knowledge map that includes all the necessary KCs becomes impossible because real
patterns cannot be observed owing to the structural problems of the training data. For
example, experts may present the notable relationship between KCs in a curriculum, but
this relationship may not be measured by a student’s learning data. Moreover, suppose
a pair of KCs exist, such as a “before” and an “after” KCs, it should yield a significant
correlation but the level of difficulty of a particular KC may be mismanaged. If the
“after” KC is observed to be simple, and all the students answer it correctly, the “before”
KC would not be found to have any effect on the “after” KC. Therefore, no association
between the two KCs would be found. To account for this, we used deductive reasoning
to extend the causal relationship based on relationships not found in the data obtained.

3 Proposed Method

The purpose of this study is to create a learning path based on LASSO, RF, and HMM
[21], and then add prerequisite relationships using deduction to the previous learning
path to improve the accuracy of the generated knowledge map and learners’ efficiency.
Specifically, a hypothetical syllogism was employed as one of the deductive reasoning
methods.

3.1 Data

To present the application results of the deduction in different cases, we used data from
Company D in the Republic of Korea. Company D provides math learning services to
K12 students in theRepublic ofKorea. In this experiment, we used the test results of three
units—“Fractions and decimals,” “Factors and multiples,” and “Advanced fractions,”—
which are studied by elementary school students in the sixth and seventh grades. For
each dataset, we randomly sampled 2000 students. Because all three datasets have the
same format, only the “Factors and multiples” dataset is introduced (see Table 1). The
curriculum generated from the list of KCs shown in Table 1 represents single learning
path. However, it does not provide information that allows skipping or backtracking as
mentioned in the overview.

For each of the 2000 students, the data from KC36 through KC58 were coded with
a value of 1 if they had mastered the corresponding KC and 0 otherwise as shown in
Table 2.

According to the basic statistical results for KC48 to KC51 and KC53 to KC54,
more than 90% students correctly answered the questions corresponding to each KC.
For instances in which the average accuracy value was exceedingly high, signifying that
the question was notably easy for most students, discerning the precedence or influence
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Table 1. Title of KC36 through KC58 for the “Factors and multiples” unit

KC ID KC Title

KC36 Finding factors

KC37 Finding multiples

KC43 Finding the greatest common divisor of two numbers

KC45 Finding the least common multiple of two numbers

KC47 Using multiplication to create equal-sized fractions

KC48 Creating equal fractions using division

KC49 Divide by 2 and 3

KC51 Divide by 2 to 9

KC52 Divide by 10 to 19

KC53 Divide by 20 to 39

KC54 Divide by multiple numbers

KC56 Dividing the least common multiple of the denominators as the common denominator

KC57 Size comparison of two fractions

KC58 Size comparison of three fractions

Table 2. Analysis data set for the “Factors and multiples” unit

Student ID KC36 KC37 KC43 KC45 … KC57 KC58

1 1 1 1 0 … 0 0

2 1 1 1 0 … 1 0

3 1 1 1 0 … 0 1

…

1999 1 1 1 1 … 1 1

2000 1 1 0 0 … 1 1

relationship between KCs solely through data analysis became challenging. In other
words, it may be difficult to determine whether KC51 influenced the correct answer to
KC53, which had a high average score only with ML results.

To conduct LASSO, RF, and HMM analyses (hereafter referred to as the
LASSO/RF/HMM analysis) for generating a learning path or knowledge map, target
KC relationships must be available to validate the predictive model’s performance. This
means that in addition to the test data used for analysis, the curriculum data utilized
by teachers to assess its effectiveness must also be prepared. Table 3 displays specific
information on KC51–54, which represents a subset of the complete target data available
for the “Factors and multiples” unit.
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Table 3. Target prerequisite relations on KC51–54 in the “Factors and multiples” unit

No Before KC After KC KC Title (Before KC) KC Title (After KC)

1 KC51 KC53 Divide by 2–9 Divide by 20–39

2 KC52 KC53 Divide by 10–19 Divide by 20–39

3 KC51 KC54 Divide by 2–9 Divide by multiple numbers

4 KC52 KC54 Divide by 10–19 Divide by multiple numbers

5 KC53 KC54 Divide by 20–39 Divide by multiple numbers

3.2 Research Procedure

The procedure used in this study is shown in Fig. 1; it illustrates the sequence of data
selection for analyses, data cleaning, creating prerequisite relationships, and expanding
the causal relationships.

Fig. 1. System operating flow diagram of the research model

After selecting the data to be analyzed and removing extreme values that interfered
with the generation of learning paths [29], we employed a linear LASSOmodel [22] and
a nonlinear RFmodel [23] to select pairs ofmeaningful relationships. Among the various
ML methods, LASSO and RF were used for relationship selection based on Wojtas and
Chen [30]. To select significant relationships, we applied supervised learning instead of
correlation analysis [31, 32]. This is based on the relationship between the regression
and correlation coefficients [32].

Thereafter, the HMM [25] was applied to establish the prerequisite relationships
between the relatedKCs as describedbyChoi andLee [21]. Theprerequisite relationships
were determined based on the transition probabilities between the relatedKCs calculated
using the HMM.

The final step was to expand the learning path created using LASSO, RF, and HMM.
In this study, we expanded the number of relationships through a hypothetical syllogism,
namely deduction,which derives a newhypothetical proposition from two previous ones.
The defined rules are listed in Table 4.

For example, if there is a prerequisite relationship fromKC01 to KC02 and a prereq-
uisite relationship from KC02 to KC03, an additional relationship from KC01 to KC03
is created by applying the rule in Table 4. By expanding the learning path using deductive
reasoning, we obtained a knowledge map that implies enhanced choices rather than a
deterministic learning path.
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Table 4. Hypothetical syllogism and propositions

Rule of inference Linear rule of inference

The next step involved calculating and comparing the accuracy of the generated
learning path with that of the knowledge map. The comparison before and after the
expansion was based on the recall formula [33].

4 Results and Analysis

The prerequisite relationships forKC51–54 of the “Factors andmultiples” unit generated
by the LASSO/RF/HMM are displayed in Table 5, as the probability value that limits
the prerequisite relationship when we compare it with the target relationships in Table 3.
One reason that models do not efficiently represent target relationships is, as any data
scientist would agree, owing to data problems. To circumvent this problem, a deduction
was applied to the obtained relationship.

Table 5. Prerequisite relations derived from the LASSO/RF/HMM on KC51–54 in the “Factors
and multiples” unit

No Before KC After KC KC Title (Before KC) KC Title (After KC)

1 KC51 KC52 Divide by 2–9 Divide by 10–19

2 KC52 KC53 Divide by 10–19 Divide by 20–39

3 KC52 KC54 Divide by 10–19 Divide by multiple numbers

4 KC53 KC54 Divide by 20–39 Divide by multiple numbers

Table 6 shows the results of applying the deduction to the prerequisite relationships
in Table 5. The results are similar to the precedence relationships in the curriculum
shown in Table 3.

The graphs in Tables 5 and 6 are shown in Fig. 2. Judging from the color of
the edges connecting KC51 to KC53 and KC51 to KC54, the curriculum predicts
that the acquisition of KC51 will affect the acquisition of KC53 or KC54; how-
ever, the LASSO/RF/HMM analysis shown in Fig. 2 (a) alone does not lead to this
relationship. In contrast, when the deduction is applied to the relationships found
in the LASSO/RF/HMM analysis shown on Fig. 2 (a), the antecedent relationships
KC51 → KC53, KC51 → KC54, shown in red, are added. These results can be seen
in the knowledge map on the right side of Fig. 2 (b).
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Table 6. Prerequisite relations from the LASSO/RF/HMM+ deduction on KC51–54 in the
“Factors and multiples” unit

No Before KC After KC KC Title (Before KC) KC Title (After KC)

1 KC51 KC52 Divide by 2–9 Divide by 10–19

2 KC51 KC53 Divide by 2–9 Divide by 20–39

3 KC51 KC54 Divide by 2–9 Divide by multiple numbers

4 KC52 KC53 Divide by 10–19 Divide by 20–39

5 KC52 KC54 Divide by 10–19 Divide by multiple numbers

6 KC53 KC54 Divide by 20–39 Divide by multiple numbers

Fig. 2. Relationship obtained by the LASSO/RF/HMMand that obtained by adding the deduction
on KC51–54 in the “Factors and multiples” unit.

The details are presented in Table 7. We confirmed that the accuracy of the model
could be improved by applying the deduction to the LASSO/RF/HMM analysis results
in all three datasets: “Fractions and decimals,” “Factors and multiples,” and “Advanced
fractions”.

We confirmed that the accuracy of the causal relationship analysis could be further
increased by applying logic to the field of AI or machine learning. Moreover, it allowed
to emphasize more focus on important KCs during learning by helping the KC that was
affected or received in the preceding relationship to appear more clearly. Although the
observed performance improvement was not significantly high, it is valuable that the
approach identifies specific areas where students requiring performance enhancement
should revisit.

Figure 3 presents the frequencies of inbound/outbound relations for each KC in
the “Factors and multiples” unit. Figure 3 consists of three heatmaps illustrating the
frequencies of appearance of KCs in the actual or estimated prerequisite relations within
the “Factors and multiples” unit. In Fig. 3 (a), the values within the heatmap represent
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Table 7. Recall before and after applying the deduction to the LASSO/RF/HMM analysis

Data Set Recall
LASSO/RF/HMM

Recall
LASSO/RF/HMM+ deduction

Change in
accuracy

Fractions and
decimals

0.5625 0.5938 3% rise

Factors and
multiples

0.4545 0.5455 10% rise

Advanced
fractions

0.8070 0.8421 3% rise

the total number of relations associated with each KC. Figure 3 (b) displays the number
of affected or inbound relations for each KC, while Fig. 3 (c) shows the number of
influencing or outbound relations for each KC. The first row of each heatmap indicates
the number of occurrences of the corresponding KC in the target relationship initially
defined by educational experts based on the curriculum. The second row displays the
number of occurrences of each KC in the combined relationship, including the relations
estimated using the LASSO/RF/HMM. The third row shows those of each KC in the
integrated relationship extended through the deduction.

Fig. 3. Inbound and outbound frequencies of relations for KC36–KC58 in the "Factors and
multiples” unit

In the first row of Fig. 3 (c), the values for KC47 andKC48, which indicates the num-
ber of times the corresponding KCs appeared to influence other KCs in the curriculum,
are one and zero respectively. Subsequently, in the prerequisite relationships estimated
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by the LASSO/RF/HMM analysis, these figures increased to five and three, respectively,
as presented in the second row of Fig. 3 (c). Finally, with the application of deduction,
these numbers further increase to seven and five, respectively. This progression reveals
that despite educational experts not originally categorizing KC47 and KC48 as major
KCs in the “before KC” category, these KCs have the potential to serve as significant
prerequisite elements in the learning process.

Thus, the application of deduction to the relations derived solely through
LASSO/RF/HMM analysis has the potential to enhance the knowledge component map.
This enhancement takes two forms: firstly, by uncovering additional meaningful rela-
tionships, and secondly, by highlighting the influential KCs that demand heightened
attention during the learning process.

5 Conclusion and Further Study

This study presents a method for creating a learning path or knowledge map and expand-
ing it through the deduction. The learning path that served as the basis before expansion
was created using the data of Company DwithML algorithms, LASSO and RF, and then
connecting them using HMM to obtain prerequisite relationships. In the case of α = 0.4
in Eq. 1 and Eq. 2, the original accuracy was 56%, 45%, and 81%, respectively, for the
three datasets, “Fraction and decimals,” “Factors and multiples,” and “Advanced frac-
tions”, which increased to 59%, 55%, and 84%, respectively, after adding the deduction.
Suppose that if a student presents a KC with a lower-than-average or the lowest score,
the recommendation involves reviewing the KC with which the original KC possesses
a prerequisite relationship on the knowledge map. This may not be possible before the
deduction for some KCs; however, utilizing a deduction technique allows the selection
of one KC among the expanded feasible KCs. This results in an efficient learning recom-
mendation for the “at risk” student with improved accuracies after the deduction [34].
However, using the deduction presents a problem—although it improves recall compared
to the default learning path, the number of relationships that comprise the knowledge
map increases to an infinite number. The future challenge is to create a rule that can filter
out noise such as unnecessary relationships.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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Abstract. Guiding students towards achieving the Intended Learning
Outcomes (ILOs) of an academic module as part of a mentoring process
presents a significant challenge, as it is important not only to emphasize
the necessary skills, but also to consider the ongoing personal progress
towards achieving a learning outcome. In addition, most educational con-
tent is presented in a ‘one-size-fits-all’ way, without taking into account
the individual needs of students. In this paper we present a recommen-
dation system based on Reinforcement Learning (RL) that derives its
suggestions from the students’ progress towards achieving the ILOs and
the current relevance of the ILOs, according to the specific didactic design
of the module. The taxonomy model proposed by Anderson and Krath-
wohl, serves as the groundwork for abstracting ILO progress, temporal
relevance, and the affiliation of recommendation items. In the process
of creating a recommendation pool, experts identified the mathemati-
cal concept and the taxonomy level addressed by existing e-assessments
in order to identify their possible association with ILOs. The RL agent
utilizes this dynamic measurement of the student’s ILO progress - mea-
sured by the Bayesian knowledge tracing algorithm - to improve its rec-
ommendations, contributing to the ongoing personalisation of learning
paths. In our evaluation, which utilized a test set of 129 mathemati-
cal tasks, the tested RL algorithms significantly outperformed a random
baseline, underscoring the potential of this approach to enhance person-
alized learning within the realm of higher education mathematics.
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1 Introduction

In the evolving landscape of higher education, the demand for delivering per-
sonalized learning paths tailored to the distinct needs and capabilities of each
student is paramount, as it has been shown to significantly enhance learn-
ing outcomes, student satisfaction, motivation, and engagement [6]. However,
the development of these personalized learning paths demands significant effort
and continuous adaptation from educators, who must meticulously specify the
Intended Learning Outcomes (ILOs), which define the knowledge and skills stu-
dents should have acquired on successful completion of the module, and select
and arrange the learning content accordingly to ensure that the learning objects
contribute effectively to the achievement of the learning objectives [4]. Moreover,
educators must continually monitor and adjust students’ learning trajectories
to optimize educational impact. To support this complex process, a variety of
strategies and methods from the field of Intelligent Tutoring Systems (ITS) offer
promising ways to create personalized learning experiences.

This paper presents a novel approach to the design of personalised learn-
ing in higher education mathematics by designing a system that focuses on the
students’ progress towards achieving ILOs, the current relevance and cognitive
demand level of topics (based on the didactic model of the module), and the
desired challenge level of the students. The aim of this process is to recommend
relevant and suitable mathematical tasks, contributing to the effective and effi-
cient achievement of the ILOs.

This work introduces a recommender system leveraging Reinforcement Learn-
ing (RL), with a focus on applying and comparing the Proximal Policy Optimiza-
tion (PPO) [13] and the Deep Q Network (DQN) [11] algorithms. By evaluating
their performance in recommending from a collection of 129 mathematical tasks
across 312 topics, we aim to establish a benchmark against a random selection
method. This comparison provides insights into the potential of combining ILO
and RL to personalize learning by aligning task recommendations with students’
progress and the challenge level they seek, directly contributing to the achieve-
ment of ILOs set by educators.

In the following sections, we first provide a reference to related work. Sub-
sequently, we thoroughly introduce the design and implementation of our app-
roach. Finally, we describe the experiments conducted and discuss them, before
concluding the paper.

2 Related Work

A large part of the education technology research has focused on the implemen-
tation of the increasingly data-driven systems. However, people tend to trust
humans more than algorithms, especially if the task is considered subjective or
it requires consideration of individual uniqueness [8]. Therefore, it is crucial to
give a close attention to specific learner characteristics in this process. A com-
prehensive meta-analysis [7] showed that digital tool use had a positive effect on
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student learning outcomes and can enhance learning in secondary school math-
ematics and science.

In recent research on adaptive learning recommendation systems, RL has
been utilized to personalize educational processes effectively. An example of indi-
vidualized educational support is a task recommender for the domain of mathe-
matics based on RL and Item Response Theory (IRT) [12]. The recommendation
used the estimated total score and item difficulty estimates derived from IRT.
The results suggested that this method allowed for personalized and adaptive
recommendations of items within the user-selected threshold while avoiding those
with an already achieved target score.

Another approach is a knowledge graph-based, context-aware, recommender
system algorithm, which was influenced by agent exploration in RL, for cre-
ating sequential learning-path recommendations [1]. The evaluation showed an
enriched recommendation based on the learners’ context, as well as a better
discovery of relevant educational content.

[9] aimed at goal-oriented learning path recommendation and pointed out
that previous methods still failed to recommend effective goal-oriented paths due
to the under-utilizing of goals. Therefore they presented a Graph Enhanced Hier-
archical Reinforcement Learning (GEHRL) framework for goal-oriented learning
path recommendation. The framework divides learning path recommendation
into two parts: sub-goal selection (planning) and sub-goal achieving (learning
item recommendation). They employed a high-level agent as a sub-goal selector
to select sub-goals for the low-level agent to achieve. Experiments demonstrated
state-of-the-art performance of the framework.

Various RL-based strategies in educational recommendation systems typi-
cally utilize a Markov decision framework combined with specific RL algorithms
to solve it. For example, [2] integrates the Markov framework with Deep Deter-
ministic Policy Gradients to tailor online course recommendations to individual
learner profiles. Similarly, [15] also employs a Markov framework alongside DQN
to optimize learning paths by analyzing behavioral data. Additionally, [16] uses
a Markov decision process enhanced with DQN to dynamically adapt content
recommendations.

3 Design and Implementation

In the context of education, the principle of “Constructive Alignment” empha-
sizes the importance of aligning the ILOs (which reflect the goals and expecta-
tions of the educator for the students), learning activities (objects) and assess-
ment of a module, to ensure that the designed learning experiences are effectively
contributing to achieving the desired educational objectives [4]. To operationalize
the mapping of ILOs, various models exist, with one of the most well-known being
the revised Bloom’s taxonomy by Anderson and Krathwohl [3]. This, comprising
6 cognitive process dimensions (remember, understand, apply, analyze, evaluate,
create) and 4 knowledge dimensions (factual knowledge, conceptual knowledge,
procedural knowledge, metacognitive knowledge), serves as the foundation for
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this work, as it provides a structured framework for classifying learning objec-
tives and associated learning activities (objects). In the context of this research,
ILOs are technically defined by a mathematical concept and a certain taxon-
omy level. It is essential to note that this model is hierarchical, meaning that
addressing a specific level implies addressing all levels below it.

Within the domain of higher education mathematics described here, a vast,
university-wide pool of tasks exists, utilized, maintained, and further developed
by universities in Saxony, which comprises over 5000 mathematics tasks in the
area of higher education mathematics that, once classified according to these
taxonomies, can be effectively aligned with ILOs to achieve targeted educa-
tional objectives. The logical and structured progression of mathematical con-
cepts allows for the strategic reuse of tasks across different learning objectives.
This not only demonstrates the interconnectedness of mathematical topics, but
also significantly improves the efficiency of resource utilization. By repurposing
tasks, educators can enhance the use of existing educational materials, reducing
the necessity to develop new tasks for each distinct learning objective and pro-
moting a more sustainable approach to curriculum development. Additionally,
within the existing task pool, a significant portion lacks student outcome data,
limiting the applicability of conventional recommendation techniques. However,
the approach proposed in this paper, focusing on the taxonomy-classification
of tasks, enables dynamic and cross-module application even in the absence of
outcome data.

For our technical implementation, we utilized two principal reinforcement
learning algorithms: Proximal Policy Optimization (PPO) [13] and Deep Q Net-
work (DQN) [11]. The PPO, an On-Policy method, i.e. it directly optimizes
the policy currently making decisions, is known for its balance between perfor-
mance and interpretability. It uses a trust region approach to ensure minimal
deviation from the previous policy while seeking improvements [13]. Conversely,
DQN is an Off-Policy method, optimizing a policy that is separate from the
one generating the current data, that learns from a broader collection of past
interactions through experience replay and fixed Q-targets [11]. This approach
not only allows DQN to leverage historical data for learning but also enhances
stability and efficiency in the learning process. Both PPO and DQN are model-
free methods, meaning they learn optimal policies directly from interaction with
the environment without constructing a model of the environment, which is
particularly advantageous in complex or unknown environments where model-
ing the dynamics can be challenging. Both methods were implemented through
the Ray RLlib library [10], providing a comprehensive framework for managing
reinforcement learning experiments, and the Gymnasium package [17], offering
a standardized interface for simulating a wide array of environments, thereby
enabling the effective training and evaluation of our models.

3.1 Reinforcement Learning Environment

The presented recommendation problem of assigning optimal tasks for the effi-
cient and targeted achievement of ILOs was modelled as a Markov Decision
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Process (MDP), a common strategy in recommender systems known for its effec-
tiveness in sequential decision-making and long-term outcome optimization [14].
With MDP, an agent aims to select an action a from the set of all possible actions
A in a state s from a set of states S in order to reach a new state s′. This mod-
elling approach is based on the assumption that the transition to the subsequent
state s′ depends exclusively on the current state s and not on previous states.
This assumption is known as the Markov assumption and forms the basis of the
MDP. For the state transitions, the agent considers the transition probabilities
P and the set of reward functions R associated with these transitions. These
reward functions are used to reward or penalise the agent for state changes. The
objective of this method is to identify a policy that maximises the expected total
reward. Encapsulating the state space, action space, reward functions and tran-
sition probabilities in the tuple (S,A,R, T ) provides a comprehensive definition
of the MDP [18].

State Space S. The state space, also known as the agent’s observation space,
defines all possible states that can be assumed by the agent’s environment. In
our modelling, each state s can be defined by a tuple (ut, pl, st), where:

1. ut: Is a list of tasks that the student has already solved.
2. pl: Is a prioritization list representing the current relevance of each concept,

influenced by the progress in the course and its didactic design. This is imple-
mented as a dictionary, where each element includes:
(a) The position in the prioritization list.
(b) A taxonomy mapping determining the desired cognitive level at which

the concept should be addressed in relation to the current state of the
course.

3. st: Is the representation of a student, also represented as a dictionary. Each
student contains:
(a) A challenge level indicating how much the student desires to be chal-

lenged.
(b) Progress on each concept. This is expressed by a taxonomy mapping

describing the extent of the student’s mastery of the concept at each
cognitive level.

Action Space A. The action space describes all actions that the agent can
choose in a given state. In our model, this encompasses all tasks that can be
recommended.

Reward Function R. The reward function evaluates an action in a given state
by a numerical value. In our model, we have integrated four different rewards
that reflect the adaptation of a task to the required relevance, the contribution
to the student’s progress, the selection of new tasks for the student and the
correspondence between the difficulty of a task and the desired challenge level
of the student. The assignment of the Relevance Reward ranges from 0 to 100,
and the Difficulty Reward and Reward for New Tasks functions range from 0
to 10. The Progress Reward typically ranges from 0 to 100 but can exceed 100
upon the achievement of ILOs, reflecting significant learning milestones.
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1. Reward based on the relevance of the selected task is determined by the
correspondence between the concepts and the addressed cognitive level rec-
ommended by the task and the prioritization list. The reward is computed for
each concept, and subsequently, the average across all concepts is considered
as the final relevance reward. For each concept i in a recommended task, the
reward is calculated as follows:
(a) Calculation of the Concept Relevance Factor (CRF):

CRFi =
|prioritization list| − index of concepti

|prioritization list|
(b) Calculation of the Taxonomy Relevance Factor (TRF): For each concept

i that is both in the task and the prioritization list, the TRF is calculated
to reflect the alignment between the cognitive levels of the tasks and the
requirements from the prioritization list. For cognitive levels j that match
exactly (j ∈ matching levels), a factor of 1 is used. If a task addresses a
concept at a lower cognitive level (j ∈ lower levels) than specified in the
prioritization list, a factor of 0.5 is used. Conversely, addressing a concept
at a higher cognitive level (j ∈ higher levels) than specified results in a
factor of −1, penalizing the misalignment.

TRFi =

∑

j∈matching levels

1 +
∑

j∈lower levels

0.5 +
∑

j∈higher levels

−1

|J|
(c) Calculation of the General Relevance Reward (RR):

RRi = (TRFi · CRFi · weighti) · 100

2. The reward for contributing to the student’s learning progress, whose calcu-
lation is described in Subsect. 3.2, is calculated specifically for concepts that
appear in the prioritization list and at cognitive levels that are addressed
by these prioritized concepts. The calculation is performed for each relevant
concept i, with a greater impact on improvements in more relevant concepts.
(a) Calculate progress: Utilizing the Bayesian Knowledge Tracing (BKT)

algorithm, which accounts for the possibility of regression as well as
advancement in learning progress, we calculate the difference in student’s
mastery level before and after completing a recommended task. However,
to ensure the reward is positive, negative values are set to 0. The differ-
ence is calculated on average over each cognitive level j:

diffi =

∑
j max(0, value afteri,j − value beforei,j)

|J|
(b) Calculation of General Progress Reward (PR):

PRi = diffi · 100



Individualised Mathematical Task Recommendations 123

(c) Calculation of Achieved Bonus: This bonus is applied for each cognitive
level j where progress exceeds 90% (j ∈ achieved), denoting mastery. If
mastery at any cognitive level regresses below this threshold, the bonus
is retracted.

PRi = PRi +
∑

j∈achieved

CRFi · 100

3. The Difficulty Reward (DR) is calculated based on the task difficulty for
fulfilling the student’s challenge level.

DR =

{
10 if challenge level >= difficulty
0 else

4. The New Task Reward (NTR) is awarded for each task recommended to the
student that they haven’t completed yet.

NTR =

{
10 if tasks have not yet been completed by the student
0 else

Transition Probability T. The transition probability quantifies the chance
of moving from one state to another when an action is performed in a particu-
lar state. In our context, this represents the probability that the progress of a
particular student will change as a result of the recommendation of a task.

3.2 Assessing Student Progress

In intelligent tutoring systems, the Bayesian Knowledge Tracing (BKT) algo-
rithm was initially designed to track how students acquire skills over time. Its
purpose is to estimate the likelihood of a student mastering a given skill based
on their performance in tasks or tests requiring that skill [5].

Extending BKT’s application beyond its original scope, we utilize it to moni-
tor students’ progression towards achieving ILOs within academic modules. This
adaptation allows us to assess each student’s advancement for specific concepts
covered by recommended tasks and at every cognitive level associated with these
concepts (encompassing all levels below), thereby offering a tailored approach to
enhancing educational content recommendations.

The BKT relies on four primary parameters, which can be adapted to our
context as follows:

– Pinit: Initial probability of a student having achieved an ILO before attempt-
ing the recommended task

– Ptransit: Probability of transitioning from not achieving to achieving an ILO
upon attempting the recommended task

– Pslip: Chance of a student making an error despite having achieved the ILO
– Pguess: Likelihood of a correct answer without achieving mastery of the ILO
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In our implementation, we assume that a student has not previously made
progress in any ILO of the module, starting with Pinit = 0. In each recommen-
dation iteration, the test’s success is used to estimate the new level of progress,
becoming the new Pinit in the subsequent iteration. To determine Ptransit the
concept weight, the cognitive level addressed in the recommended task and the
task difficulty are multiplied together. Pslip and Pguess were assessed by math-
ematical experts on the basis of the task structure. The complete calculation is
performed as follows:

For a correct solution to the recommended task, we determine Pobs=correct

using the formula:

Pobs=correct =
Pinit · (1 − Pslip)

Pinit · (1 − Pslip) + (1 − Pinit) · Pguess

If the solution is incorrect, Pobs=wrong is calculated using the following formula:

Pobs=wrong =
Pinit · Pslip

Pinit · Pslip + (1 − Pinit) · (1 − Pguess)

Subsequently, these calculated probabilities are employed to assess the student’s
progress within the specific concept i and cognitive level j:

Progressi,j = Pobs + (1 − Pobs) · Ptransit

4 Experiments

4.1 Recommendation Pool

In order to create a recommendation pool to train the RL agent and measure
students’ progress in the ILOs, an experienced maths expert evaluated 129 exist-
ing online maths exercises taken from the learning management system OPAL
and the integrated examination software ONYX. This selected set of tasks repre-
sents all the exercises available to students in a first-semester Bachelor’s course
at HTWK Leipzig. The 129 exercises reflect the breadth of the module and cover
a total of 312 different concepts. Various criteria were taken into account when
selecting the exercises:

id Reference of the task
name Name of the task
link Direct link to the task for the presentation of the recommendation
difficulty Overall difficulty of the task
vector of weights Refers to the differentiated assignment of significance or

prominence to different concepts within a task
vector of concepts List of all concepts addressed in the task
vector of process dimensions Mapping of the addressed cognitive process

dimension per concept
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vector of knowledge dimensions Mapping of the addresed knowledge dimen-
sion per concept

slip probability Probability that a student who already has the skills required
in the task can fail the task

guess probability Probability that a student who does not have the skills
required in the task can solve the task by guessing

To obtain a detailed insight into the classification and assignment of tasks, refer
to the following representative example:

Task: Replace the question mark with one of the following quantifier to
make the following statement true:

∀p ∈ N : ?q ∈ Z :
p

q
∈ Q

A. ∀... for all
B. ∃... there exists (at least one)
C. �∃... there exists none
D. None of the above

The task engages students with concepts such as quantifiers, specifically the exis-
tential and universal quantifiers, and sets, including natural, real and rational
numbers. It is classified under the cognitive process dimension of “understand”
and the knowledge domain of “conceptual knowledge” for all its concepts, requir-
ing the identification of the correct quantifier to make the statement true. The
probability to slip is 0.1 due to the simplicity of the task and the absence of
input fields other than the single choice boxes. The guess probability is 0.25,
reflecting a chance of guessing the correct answer among the provided options.
Overall, the task is classified as having low difficulty, with a rating of 0.1 (10%
difficult), making it accessible for those with a foundational understanding of
the involved mathematical concepts.

4.2 Experimental Setup

In our study, we train the RL models and observe their performance in sim-
ulated environments with virtual students. For this purpose, the environments
were created wherein the RL-agent recommends a task to a randomly generated
student, for which an outcome is estimated. As described in Subsect. 3.1, each
environment consists of a student and a prioritization list for relevant concepts.
In our experimental setup, both are generated with random parameters at each
initialisation. For the prioritization list, a selection is made by choosing a ran-
dom number of concepts with a random selection of taxonomy levels at which
these concepts should be addressed. In order to simulate the processes of real
students, simulated students are generated by assigning them a random ability
level that represents their overall capability in handling tasks and a random
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progress, which is created by a random selection of concepts for which a random
value of progress per cognitive level was determined. Additionally, a function
was developed to determine whether a simulated student successfully completes
a given task. This determination is based on calculating a success rate, which
integrates the student’s ability level, the difficulty of the task, and the discrep-
ancy between the student’s progress and the task’s requirements. The success
rate is computed as follows:

success rate = 0.5 + (a − 0.5) − (d − 0.5) − (g − 0.3)

where a represents the student’s ability level, which varies from 0 to 1, d indicates
the difficulty level of the task, also ranging from 0 to 1. g denotes the average gap
between the cognitive levels concepts are addressed in the task and the highest
level in which the student has achieved any progress in these concepts, with
values ranging from −1 to 1. Here, negative values indicate that the student’s
mean progress exceeds the cognitive levels adressed in the task. If this success
rate exceeds 0.5, the task completion is considered successful, and the student’s
learning progress is updated as detailed in Subsect. 3.2.

4.3 Results

To evaluate the effectiveness of the trained models a comparative analysis was
conducted against a random baseline across 1000 unique, randomly generated
environments, as described in Subsect. 4.2. These settings were created to sim-
ulate diverse student progress levels and the relevance of ILOs, incorporating
all 129 tasks as potential recommendations. Each model was required to issue a
single recommendation per environment.

The outcomes, depicted in Fig. 1, are illustrated through two bar graphs,
showcasing the average rewards received from the recommendations. The first
graph offers a detailed breakdown by individual reward functions, revealing that
PPO outperforms in ‘Relevance Reward’ and ‘Progress Reward’ categories, sur-
passing both DQN and the random baseline. The noticeable outperformance
of both PPO and DQN in the ‘Progress Reward’ (PR) category compared to
the random baseline may be attributed to their more effective selection of tasks
that contribute to a student’s progression. All three approaches show similar
performance in the ‘New Task Reward’ category. This can be attributed to the
test environment setup, where each model was required to issue only a single
recommendation per environment, ensuring that the recommended task is inher-
ently new and thus all models invariably score the full 10 points in this category.
However, for ‘Difficulty Reward’ (DR), DQN’s recommendations stand out, out-
performing those of PPO and the random baseline, which suggests that DQN
may have a better strategy for gauging or responding to task difficulty levels.

The second graph compares the total rewards obtained by the algorithms,
highlighting that PPO achieves the highest improvement, outperforming the
random baseline by an average of 36.61%. Meanwhile, DQN also demonstrates
a notable advancement, being 30.49% better than the random selection. These
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findings underscore the efficacy of both RL algorithms and highlight the poten-
tial of RL to enhance personalized learning pathways in higher education
mathematics.

Fig. 1. Comparison of algorithms PPO and DQN, along with a random baseline, across
four different reward functions (RR - Relevance Reward, PR - Progress Reward, NTR
- New Task Reward, DR - Difficulty Reward) in the left bar charts. The right bar chart
illustrates the cumulative reward comparison for PPO, DQN, and the baseline

5 Discussion

In this study, we introduced a RL-based recommendation system designed to sup-
port students in achieving ILOs. Our results showcase the system’s efficacy, with
the PPO algorithm outperforming a random baseline by 36.61%, and the DQN
algorithm also showing a commendable performance improvement of 30.49%
over the baseline. These findings highlight the practical utility of our approach
in personalizing learning experiences.

Despite the promising outcomes, the reliance on expert-classified data intro-
duces a potential for errors or subjective biases, suggesting a need for future
studies to involve multiple independent raters to enhance the classification’s
reliability. A further limitation noted is the selection bias introduced by utiliz-
ing all tasks from a specific module as the recommendation pool. This approach
does not account for the entire spectrum of possible tasks, potentially skewing
the algorithms’ performance when faced with a completely different set of tasks.
Acknowledging this, future work should investigate the system’s robustness and
performance across a broader range of tasks, ensuring its effectiveness in uni-
versally enhancing learning outcomes. The results of this study, derived from
a simulated environment, underscore the need for real-world testing to validate
the RL-based system’s effectiveness in actual educational settings. Conducting
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practical tests will be crucial for future work to identify potential challenges and
confirm the system’s impact on learning outcomes. Unlike related studies, such
as [12], which base recommendations on statistical analyses, our approach pro-
vides the capability to recommend tasks for which no outcome data is available.
Furthermore, the adaptability of the proposed methods, such as BKT and tax-
onomy classification, suggests broader applicability to diverse domains, opening
avenues for future research. It is conceivable to extend this approach to create a
generalized mathematics recommendation system suitable for various academic
modules with distinct ILOs. Although our approach requires the classification of
learning materials based on concepts and taxonomy levels, which poses a scalabil-
ity challenge, it uniquely allows for module-transcendent use of these materials.
In contrast to systems that recommend learning materials tailored to specific
skills, our method enables a more individual selection of materials aligned with
course-specific learning objectives. This facilitates contributions from multiple
stakeholders, such as instructors, who can add to a shared pool of resources that
others may use effectively.

6 Conclusion

This paper introduces an effective recommendation system designed for academic
settings, assisting students attaining the predefined learning objectives of a mod-
ule while considering the learner’s individual progress and specific preferences for
challenging tasks. By comparing the PPO and DQN algorithms against a ran-
dom baseline, we have shown that both algorithms are more efficient in selecting
appropriate tasks, indicating the potential of RL for enhancing the relevance of
educational content recommendations.

While the outcomes are encouraging, we acknowledge the study’s initial
reliance on simulated environments. Future work will focus on real-world appli-
cations to better understand the system’s practical benefits and limitations. This
step is crucial for assessing the system’s real impact on student learning and for
making necessary adjustments to enhance its effectiveness.

By moving towards implementing and testing in actual educational settings,
we aim to validate the system’s potential to personalize learning at a broader
scale. This research contributes to the ongoing discussion on integrating AI in
education, highlighting the importance of further exploration to fully realize its
benefits.
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1. Abu-Rasheed, H., Weber, C., Dornhöfer, M., Fathi, M.: Pedagogically-informed
implementation of reinforcement learning on knowledge graphs for context-aware
learning recommendations. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou,
M., Papathoma, T. (eds.) EC-TEL 2023. LNCS, vol. 14200, pp. 518–523. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-42682-7 35

2. Agrebi, M., Sendi, M., Abed, M.: Deep reinforcement learning for personalized
recommendation of distance learning. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo,
S. (eds.) WorldCIST 2019. AISC, vol. 931, pp. 597–606. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-16184-2 57

3. Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, complete
Addison Wesley Longman Inc., New York (2001)

4. Biggs, J.: Enhancing teaching through constructive alignment. Higher Educ. 32(3),
347–364 (1996). https://doi.org/10.1007/BF00138871

5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of
procedural knowledge. User Model. User-Adap. Interact. 4(4), 253–278 (1994).
https://doi.org/10.1007/BF01099821

6. Fariani, R.I., Junus, K., Santoso, H.B.: A systematic literature review on per-
sonalised learning in the higher education context. Technol. Knowl. Learn. 28(2),
449–476 (2023). https://doi.org/10.1007/s10758-022-09628-4

7. Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S.I., Reiss, K.M.: The potential
of digital tools to enhance mathematics and science learning in secondary schools:
a context-specific meta-analysis. Comput. Educ. 153, 103897 (2020)

8. Kizilcec, R.F.: To advance AI use in education, focus on understanding educators.
Int. J. Artif. Intell. Educ. 34, 1–8 (2023)

9. Li, Q., et al.: Graph enhanced hierarchical reinforcement learning for goal-oriented
learning path recommendation. In: Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, pp. 1318–1327 (2023)

10. Liang, E., et al.: RLlib: abstractions for distributed reinforcement learning. https://
doi.org/10.48550/arXiv.1712.09381. http://arxiv.org/abs/1712.09381

11. Mnih, V., et al.: Playing Atari with deep reinforcement learning (2013). https://
doi.org/10.48550/arXiv.1312.5602. http://arxiv.org/abs/1312.5602
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Abstract. In this study, we introduce a Conversational Intelligent Tutoring Sys-
tem designed to create an interactive and immersive learning experience aimed at
improving the speaking abilities of second language learners. This system mim-
ics a human tutor by engaging in role-play dialogues with the learner, based on
predefined scenarios, and offers corrective feedback on the learners’ utterance,
while also engaging in chat to encourage student participation. The tutoring sys-
tem includes a deep-learning classifier to assess students’ utterances, a dialogue
generator customized for responding to students’ free-form chats, and a straight-
forward dialogue manager to determine the sequence of conversational turns. To
tackle the challenge posed by the scarcity of tutoring dialogue resources, a signif-
icant hurdle for deep learning methods, we present a cost-effective approach that
efficiently extends existing Korean dialogue datasets for the purpose of intelligent
language tutoring. We carried out a series of experiments to compare various fine-
tuned models based on language models of different sizes, and included a compar-
ative analysis with ChatGPT. We discovered that smaller, specialized, fine-tuned
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1 Introduction

Conversational Intelligent Tutoring Systems (CITS) strive to replicate the experience of
human tutors by conducting personalized one-on-one tutorial conversations tailored to an
individual’s needs. They provide immediate, human-like feedback on errors, misunder-
standings, or misconceptions. CITS mostly adopt a goal-oriented dialogue architecture,
facilitating error detection and correction for learners [1–3]. However, their specificity in
objectives leads to inflexibility, risking the learning experience when users diverge from
set scenarios [3, 4].Additionally, the structured design of goal-oriented dialogue systems,
which involves natural language understanding through detecting user intents, manag-
ing dialogue by predicting dialogue acts and states tracking, and generating responses,
complicates educational content updates, potentially elevating maintenance costs [5].
As an alternative, although still in their infancy, open-domain dialogue systems, com-
monly referred to as chatbots, are also utilized in speaking education for second lan-
guage learners [6, 7]. However, CITS aim to achieve specific learning goals through
designated scenarios, and chatbot systems cannot achieve this purpose. In addition, they
show limitations in assessing student errors and providing feedback.

In recent years, the development of large-scale language models (LLM)with billions
to hundreds of billions of parameters has empowered these models to exhibit excellent
performance across various tasks, marking significant progress in the field of natural
language processing. ChatGPT [8] and similar AI-driven technologies have made sig-
nificant strides in the field of education, offering personalized learning experiences,
instant feedback, and interactive learning opportunities.

In this paper, using the latest LLM development, we aim to build a CITS through
a simple system architecture, and offer learners flexible dialogue tutoring to improve
second language learners’ speaking skills. The system conducts dialogues with users
through role-play according to given scenarios, assessing learners’ responses, offering
corrective feedback, while providing opportunities for spontaneous and free-flowing
conversations.

Our contributions are as follows:

1) We present a streamlined system architecture for CITS designed for rapid imple-
mentation: a classifier to assess students’ utterances, a dialogue generator specifi-
cally developed to produce responses to students’ free-form chats, and a straightfor-
ward dialoguemanagementmodule responsible for selecting the system’s subsequent
utterance types and navigating the dialogue in alignment with predefined scenarios.

2) We introduce an approach to leverage existing dialogue datasets for the swift and cost-
effective creation of tutoring dialogue datasets. This approach addresses the notable
scarcity of tutoring dialogue data necessary for training deep learning models, a
significant barrier to the rapid adoption of state-of-the-art NLP technologies in the
educational sector.

3) We conducted comprehensive experiments to evaluate a spectrum of fine-tuned mod-
els derived from language models with varying sizes, spanning from about half a
billion to 13 billion parameters, incorporating a comparative analysis with ChatGPT
(both GPT-3.5 and GPT-4). This series of experiments has shown that our efficient
model stacks up against ChatGPT.
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2 Related Work

2.1 Conversational Intelligent Tutoring Systems

Research into Intelligent Tutoring Systems (ITS) has continuously evolved. The lan-
guage tutor plays a role similar to a language parent [9], promoting natural dialogue,
creating situations sometimes resembling conversations with friends, andmaking efforts
to understand learners’ speech beyond their language proficiency level. At times, they
are designed to mimic human tutors in encouraging learning motivation through free
conversation [10].

AI and deep learning-powered ITS have drastically transformed tailored learning
experiences across various educational domains, including programming education [11,
12], clinical or medical training [13, 14] and mental therapy [15, 16] like cognitive-
behavioral therapy (CBT), influencing student achievements significantly [17]. By har-
nessing the power of AI and languagemodels, these systems have significantly improved
personalized learning across various fields. They foster better student performance in
interactive and efficient learning environments, especially in case of CITS [6, 18, 19].

In the domain of CITS, existing research has predominantly utilized rule-based or
goal-oriented dialogue systems, which are augmented with domain knowledge metic-
ulously crafted by humans [2, 20, 21]. Goal oriented dialogue systems are designed to
accomplish one or several specific tasks [22], including making restaurant, hotel, or taxi
reservations [23], or providingmovie recommendations [24, 25]. Open-domain dialogue
systems, also known as chit-chat models, can be utilized for language learning. Their
objective is to engage users in conversation and maintain interest through dynamic and
captivating chats [4, 22].

In the realm of speaking tutoring, achieving educational objectives is crucial, a
domain where goal-oriented dialogue systems shine. These systems are complemented
by chit-chat systems, known for facilitating natural interactionswith students. Numerous
studies have underscored the importance of increased interactivity for students learn-
ing languages through free-form conversations, thus supporting the adoption of hybrid
systems [4].

Moreover, CITS must accurately assess the correctness of human responses in order
to provide relevant hints or feedback [1, 26]. AI dialogue systems are currently unable to
meet these critical requirements, essential for acting as complete substitutes for real-life
language instructors [27].

2.2 LLM-Integrated Second Language Learning

The era of language model advancements significantly contributes to language learning
by providing access to abundant language data, personalized learning experiences [28,
29] improved language proficiency [30, 31], 24/7 accessibility [32, 33] supplementary
learning tools, natural language generation [34] and effective feedbackmechanisms [35].

In the domain of Large Language Models (LLM), ChatGPT has garnered signifi-
cant attention for its accessibility. It is widely used for personal writing assistance and
has quickly become integrated into Duolingo and other conversational educational sys-
tems [3, 36], owing to its proficiency in dialogue and feedback generation. Numerous
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researchers have undertaken comparative experiments involving ChatGPT to assess its
capabilities in the educational sector [37, 38].

2.3 Dialogue Datasets for Deep Learning-Based Second Language Tutoring

Developing anCITS for language tutoring requires a specific dataset for training dialogue
models.While traditional educationalmaterials offer quality, their quantitymay fall short
for adequately training deep learning-based dialogue models.

DREAM [39] and CoQA [40], conversation-based Question-Answering datasets
featuring multi-choice options and structured correct answers, respectively, have been
employed for educational purposes owing to their organized format.

Tutoring conversations differ fromgeneral conversations in that studentsmayprovide
answers that are not always correct. The tutoring system must evaluate these responses
and offer appropriate feedback [22, 26]. However, achieving this requires additional
annotations and educational feedback in tutoring dialogue datasets, incurring high costs.

DIRECT [26] and CIMA [22] are tutoring dialogue datasets enriched with addi-
tional annotations for both student and tutor utterances. They cater to reading compre-
hension for English learners and vocabulary acquisition in Italian for English speakers,
respectively.

3 KORLINGS Dataset Construction

Weaimed to create a tutoring dialogue datasetKORLINGS (KoreanLanguage Speaking)
specifically tailored for Korean as a Foreign Language (KFL) education with a focus
on speaking skills. Our goal was to quickly and efficiently construct tutoring dialogue
datasets in an economical manner. The method was to expand the existing dialogue
dataset suitable for KFL learners.

3.1 Tutoring Dialogues with Annotations

We utilized an existing sentence-aligned multilingual dataset covering English, Korean,
Japanese, and Chinese, initially created for machine translation purposes. This dataset
was chosen due to its coverage of conversations in various scenarios such as travel,
shopping, transportation, accommodation, restaurants, emergencies, etc.,making it well-
suited for foreign language teaching. Our dataset construction solely incorporated the
Korean portion.

Following a real-world teaching approach, we envision the tutoring scenario as fol-
lows: students first learn a predefined dialogue scenario and then engage in role-play
with an AI tutor. During this interaction, students maymake commonmistakes typical of
second language learners. The tutor provides corrections to guide the student in rephras-
ing the utterance, allowing the conversation to progress. To simulate an educational
environment resembling interactions between a human tutor and a student, we assumed
that participants might occasionally engage in free-form chats outside the predefined
scenario. Each dialogue encompasses three types of turns:
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Fig. 1. Illustration of a multi-turn interaction between a student and a tutor.

Scenario Type: In this type, the tutor or student follows a given scenario. For tutor
utterances, a scenario type would be added as an annotation. For student utterances, an
annotation with a correct or incorrect label will be added, indicating whether students
articulate a given scenario appropriately.
Feedback Type: This type pertains to a tutor utterance aimed at eliciting correct
expressions when students fail to articulate the scenario type accurately.
Chat Type: This type is for the utterances outside of the predefined scenarios during the
conversation.

Turn types are incorporated into tutor utterances, and labels are assigned to student
utterances. An illustration of the dialogue scenario between the tutor and a student
is depicted in Fig. 1. The utterances labeled with Scenario and Correct annotations are
derived from existing scenarios. While those labeled with Feedback,Chat, and Incorrect
annotations are newly constructed.
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3.2 Dataset Statistics

The statistics for the multi-turn dialogues in the KORLINGS dataset are presented in
Table 1. The “Dialogue” and “Scenario Turn” data are sourced from an existing bilingual
dataset. The “Tutoring Turn” comprises the extended dataset, augmented with student
incorrect utterances, tutor feedback, and chats, and is specifically employed in our study.
A single turn encompasses a maximum of two utterances exchanged between the tutor
and the student.

Table 1. Statistics of the KORLINGS dataset.

Train Valid Test Total

Dialogue # 3,483 398 398 4,279

Scenario Turn # 17,415 1,990 1,990 21,395

Avg. turns 5 5 5 5

Tutoring Turn # 26,645 3,105 3,107 32,857

Avg. turns 7.65 7.80 7.81 7.68

We adopted user utterances in tutoring turns labeled as correct, incorrect, and chat
from the dataset above for user utterance assessment, using the existing scenario turns
as the golden standard (Table 2).

Table 2. Distribution statistics of labels for student utterances assessment

Labels Train Valid Test Total

Correct 12,973 1,360 1,372 15,705

Incorrect 7,013 737 743 8,493

Chat 4,119 830 805 5,754

Total 24,105 2,927 2,920 29,952

Table 3 shows that correct pairs allowed variations in student utterances, while incor-
rect pairs included grammatical errors ormissing key information.Chats referred to cases
where utterances deviated from the expected sentence in the given scenario.
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Table 3. Comparison of Student Utterances in Tutoring Turns to the Golden Standard

Label Student utterance Golden standard

Correct
?

Until when is the viewing time?

?

Until what time can I view it?

Incorrect
, ?

Yes, is the pen anywhere?

, ?

Yes, where is the pen?

Chat
.

The pen isn't coming out.

?

Is this the correct way to write?

3.3 Dataset for Generation

Below is an illustration of the statistics of dialogue datasets for the generative model.
The statistics for the dialogue dataset for generation is summarized in Table 4. To utilize
high-quality training data, we filtered out data with a length of less than 18 characters,
which accounts for about 30% of the total dataset. The statistics of the refined dataset
for tutor utterance generation through these processes are as follows:

Table 4. Statistics of dialogue dataset for generation

Train Valid Test Total

25,274 3,200 4,393 32,867

4 Development

4.1 System Design

The system comprises two key components, featuring a straightforward dialogue man-
ager: a classifier for assessing the learner’s utterance and a generator for responding to
the learner’s chats.

The system flow is relatively simple, especially when compared to previous goal-
oriented dialogue systems for language tutoring (refer to Fig. 2). Upon receiving a
learner’s utterance, it is classified as correct, incorrect, or chat. If the user’s utterance is
deemed correct, the system outputs the next scenario utterance. In the case of an incorrect
utterance, the system provides corrective feedback to guide the learner towards the
correct answer. For chat-type utterances, the dialogue generator produces an appropriate
response to steer the conversation back to the predefined scenario.
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Fig. 2. Simplified conceptual schema of the CITS

4.2 Implementation

Classifier and Generator. Both the classifier for assessing student utterances and the
chat response generator (Fig. 2) were implemented using the fine-tuning languagemodel
approach. We trained the classifier and generator using pretrained language models of
various sizes:

Mini LM: About 0.2B. We utilized the compact dialog model eT5-chat [41] as our
mini-sized base model. The eT51 model, trained on an extensive 136GB corpus com-
prising Korean Wikipedia articles, newspaper texts, broadcast transcripts, and scripts
from movies and dramas, is adept at understanding and generating text. The eT5-chat
model was fine-tuned from the eT5-base model using approximately 2 million chat turns
(equivalent to around 5.4 million utterances) of conversational data.

Small LM:Up to 13B. Small languagemodels (SLMs) have gained attention alongside
ChatGPT due to their efficiency and effectiveness in various tasks. While ChatGPT
excels in generating rich text, SLMs, with their smaller size, offer a resource-efficient
alternative for applications with limited computational resources.

After conducting several preliminary experiments and examining recent trends in
Korean language LLMs on the open-ko-llm-leaderboard2, we have chosen the fol-
lowing models for our study: polyglot_ko-5.8B3, polyglot_ko-12.8B4, Kullm-12.8B5,
Llama-2-ko-DPO-13B6. The Llama-2-ko-DPO model is a version in which Korean

1 https://aiopen.etri.re.kr/et5Model.
2 https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard.
3 https://huggingface.co/EleutherAI/polyglot-ko-5.8b.
4 https://huggingface.co/EleutherAI/polyglot-ko-12.8b.
5 https://huggingface.co/nlpai-lab/kullm-polyglot-12.8b-v2.
6 https://huggingface.co/daekeun-ml/Llama-2-ko-DPO-13B.

https://aiopen.etri.re.kr/et5Model
https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard
https://huggingface.co/EleutherAI/polyglot-ko-5.8b
https://huggingface.co/EleutherAI/polyglot-ko-12.8b
https://huggingface.co/nlpai-lab/kullm-polyglot-12.8b-v2
https://huggingface.co/daekeun-ml/Llama-2-ko-DPO-13B
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text is instruction-tuned on the Llama-2-13B model utilizing the Direct Preference
Optimization (DPO) method [42].

Advanced GPT Models: GPT-3.5 and GPT-4. While ChatGPT excels in numerous
tasks, its larger parameter counts poses challenges for fine-tuning on specific tasks. In our
study, we employed ChatGPT as a benchmark for comparative analysis. Experiments
were conducted using OpenAI’s APIs, with the utilized models being GPT-4 (gpt-4-
1106-preview) and GPT-3.5 (gpt-3.5-turbo).

Simple Dialogue Manager. The dialogue manager, simpler than traditional systems,
selects turn types based on classification results and generates tutor responses using a
straightforward policy.

We enforce a policy allowing students a maximum of two incorrect responses in their
utterances. Initially, corrective feedback is given after the first incorrect response. If a
second incorrect response occurs, the system provides the correct answer and progresses
to the next scenario. Alternatively, the system proceeds to the next utterance or engages
in a chat.

Let Lt be the student assessment result, Tt denote the tutor turn type at time t, and
Tt-1 represent the tutor turn type in the preceding turn, we have,

Tt =
⎧
⎨

⎩

Chat, ∀Lt = Chat
Feedback, ∀Lt = Incorrect, and , Tt−1 �= Feedback
Scenario, or Chat, otherwise

(1)

5 Experiment

5.1 Evaluation Criteria

We performed prediction experiments involving three primary model categories: eT5,
SLMs, and ChatGPT. The classification results for student utterance assessment were
evaluated based on Accuracy, Precision, Recall, and F1 scores. The generation results
for the tutor utterances were assessed using the following metrics:

SacreBLEU [43]. BLEUscore is calculated based on the precision ofmatching n-grams
(contiguous sequences of n items, typically words) between the candidate and refer-
ence sentences [44]. SacreBLEU is designed to standardize and facilitate the consistent
computation of BLEU scores.

METEOR [45] is one of the metrics used to measure the performance of translation
and models at the sentence level. METEOR is based on the harmonic mean of unigram
precision and recall.

ROUGE-L [46]. ROUGE is one of themetrics utilized for assessingmodel performance
in automatic summarization, and involves the unigram (1), bigram (2), and longest
substring length ratio (L). ROUGE-L is based on the ratio of the length of the longest
common subsequence emphasizing semantic matching.
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Semantic Textual Similarity (STS) [47]. STS is one of the semantic similarity mea-
surements, converting each sentence into a fixed-size vectors with a sentence transformer
to measure the cosine similarity between sentence vectors.

5.2 Evaluation Results

Classification Results. We fine-tuned the eT5-chat and the SLMs using the dataset
presented in Table 2. For the fine-tuning and prediction phases, SLMs consistently used
the “#classification” instruction, which yielded improved performances. Conversely, the
GPTmodels employed a specialized prompt for classification, detailed in the Appendix.
As shown inTable 5, the eT5-chatmodel, after fine-tuning, achieved the highest accuracy,
significantly outperforming the GPT models and the fine-tuned SLMs.

Despite conducting a range of experiments to refine prompts, instances of misclas-
sification occurred in both SLMs and the GPT models, yielding responses that deviated
from the predefined categories of correct, incorrect, or chat (for instance, receiving com-
pound responses such as “correct, chat”). These inaccuracies led to a decline in overall
performance, adversely affecting accuracy and other evaluation metrics.

Table 5. Evaluation results of classifiers for assessing student utterances.

Base model Accuracy Precision Recall F1 score

eT5-chat 93.14% 92.97% 93.05% 93.01%

Polyglot_ko-5.8B 85.14% 63.81% 64.89% 64.18%

Polyglot_ko-12.8B 61.58% 52.26% 54.07% 48.05%

Kullm-12.8B 81.16% 60.38% 62.02% 60.73%

Llama-2-ko-DPO-13B 83.94% 84.29% 84.34% 83.36%

GPT-4 79.83% 56.92% 60.79% 57.88%

GPT-3.5 60.72% 39.33% 44.87% 39.80%

Generation Results. We fine-tuned the eT5-chat and the SLMs using the dataset pre-
sented in Table 4. Table 6 shows that evaluations using theROUGE-Lword pairmatching
matrix and semantic text similaritymeasures fromSentence Transformers (STS) demon-
strated comparable performance between fine-tuned SLMs and GPT models, with the
fine-tunedmini-LM falling short. In contrast, performance assessmentswith SacreBLEU
and METEOR highlighted the dominance of fine-tuned SLMs.

In terms of overall performance in the generated results, the model fined-tuned with
base model Llama-2-ko-DPO-13B exhibited the highest performance over all evaluation
matrix, indicating the dominance of models fine-tuned based on SLMs.

5.3 Human Evaluation

A human evaluation was conducted to validate the interpretation of quantitative evalu-
ation results. Human evaluation was conducted for models that demonstrated excellent
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Table 6. Evaluation results of generators for tutor utterance generation

Base Model SacreBLEU METEOR ROUGE-L STS

eT5-chat 2.1160 14.0428 0.6926 0.3933

Polyglot_ko-5.8B 3.2437 16.8004 0.9056 0.4272

Polyglot_ko-12.8B 3.3489 16.4451 1.0401 0.4231

Kullm-12.8B 3.4600 16.6660 1.0075 0.4272

Llama-2-ko-DPO-13B 3.5605 17.0900 1.2085 0.4388

GPT-3.5 0.7469 13.3495 1.0488 0.4329

GPT-4 1.3196 14.6357 1.1626 0.4341

performance in each category, specifically fine-tuned eT5-chat, Llama-2-ko-DPO-13B,
and GPT-4 To ensure evaluation quality and consistency, two raters assessed system
utterances across a randomly selected sample of 100 dialogues, 1106 turns. To prevent
bias, we provided the raters with anonymity, randomly labeling the models as A, B
and C. In the initial stages, raters engaged in several discussions, developing a detailed
manual with examples to clarify criteria. After assessing the examples, an independent
evaluation commenced.

The evaluation criteria consist of three aspects: sensibleness, specificity, and diffi-
culty. Sensibleness and specificity are commonly used in human evaluations of open-
domain dialogue systems [48]. Sensibleness measures whether the response aligns with
the context of the conversation, while the specificity evaluates the specificity of the utter-
ance. We also incorporate difficulty as a primary criterion for conversational tutoring,
specifically in relation to the student’s level [49]. In our evaluation, we assume that the
difficulty level of the scenario presented aligns with the student’s level. Therefore, utter-
ances that deviate from 50 to 200% of the average length of the golden standards in the
given scenarios were deemed to not meet the appropriate difficulty criteria. Additionally,
the choice of lexicons and expressions should also be taken into account for evaluating
difficulty.

Evaluators assessed whether the generated sentences were contextually sensible,
specific to the given situation rather than general, and had an appropriate length in
relation to the overall difficulty of the dialogue. Each aspect was rated on a scale of 0 or
1 based on the evaluators’ judgment of the entire context of the preceding conversation.
The scores for all three criteria were then summed up for each model, resulting in an
overall score ranging from 0 to 3.

Figure 3 represents the distribution of overall scores after evaluation. Reviewing the
proportion of overall scores of 3 each model attained, which indicates fulfillment of all
three criteria—sensibleness, specificity, and difficulty—the fine-tuned model utilizing
Llama-2-ko-DPO-13B achieved a rate of 53.39%, surpassing the GPT-4 model by more
than 10%.

Figure 4 illustrates the human evaluation results by criteria. The results are averaged
across two raters for each model, and the overall average is denoted as overall. For the
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Fig. 3. Distribution of overall evaluation scores (0–3) for each model.

sensibleness score, Llama-2-ko-DPO-13B shows a slight advantage, followed by GPT-
4, while eT5-chat has a significantly lower performance. This is due to eT5-chat based
model responding to the student’s utterance by merely echoing a question or repeating
the same utterances without considering the preceding conversation context.

In terms of specificity score, GPT-4 surpasses others by more than 10%, followed by
eT5-chat and Llama-2-ko-DPO-13B based fine-tuned models. This is because the two
fine-tuned models are more inclined to produce generic responses (such as “Yes,” “Un-
derstood,” and “Thank you.”) compared to GPT-4, which slightly reduces the specificity
score.

Assessing the difficulty of the conversation based on the overall dialogue level, the
fine-tuned model based on Llama-2-ko-DPO-13B marginally leads, followed by eT5-
chat, and GPT-4 exhibits a performance roughly 20% lower than theirs. The difficulty is
evaluated on both ends, encompassing both overly difficult and overly easy responses.
The average sentence length for the golden standard was 21.72, whereas eT5-chat had a
length of 20.16, Llama-2-ko-DPO-13B had a length of 13.98, and GPT-4 had a length of
34.91. In other words, while eT5-chat generated sentences of similar length to the golden
standard, Llama-2-ko-DPO-13B and GPT-4 produced sentences that were relatively
shorter or longer, respectively. The reason for the relatively low score of GPT-4 is its
tendency to generate sentences that are too long compared to the conversation level,
despite including “response briefly” in the prompt.

Cohen’s Kappa inter-rater reliability between the two raters score of K= 0.4177. The
human evaluation outcomes aligned with the quantitative evaluation results in Table 6.
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Fig. 4. Human Evaluation Results Based on Three Criteria with an Overall Score Scaled to 1

6 Conclusion

Our research presents a Conversational Intelligent Tutoring System (CITS) aimed at
improving second language learners’ speaking skills through immersive experiences.
The simplified architecture ofCITS, comprising a classifier, dialogue generator, and intu-
itive dialogue manager, expedites implementation by integrating generative models into
the tutoring domain. Addressing the challenge of limited tutoring dialogue resources, we
propose a cost-effective approach leveraging existing dialogue datasets, thereby enabling
the efficient creation of tutoring dialogue datasets.

Comprehensive experiments, including human evaluation, have been conducted to
assess the performance of GPT-4 and fine-tuned models in educational tutoring set-
tings. The evaluation results reveal that although GPT-4 exhibits strong sensibleness
and specificity, it faces challenges in aligning difficulty levels with those of individual
students, thereby impeding its seamless application in tutoring. In contrast, fine-tuned
models based on smaller language models may face difficulties in generating sensible
responses or maintaining specificity. Nevertheless, they exhibit effective control over
difficulty levels and have demonstrated the potential to either match or surpass GPT-4’s
performance within specific data domains.

The ongoing need for cost-effective and controllable solutions that can readily adapt
user specificity remains critical, particularlywithin the education sector, given the diverse
range of students across various grades and proficiency levels. Our study provides valu-
able insights and practical guidance for developers grappling with similar challenges in
educational systems.

Our experiment focused on a conversational tutoring system for Korean as a Foreign
Language (KFL), yet the implementation approach is language-independent. As part of
future work, we aim to swiftly extend our research to other language tutoring, facili-
tated by the multilingual nature of the base dialogue dataset. Additionally, a usability
evaluation with a real student group is necessary for further investigation.
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Appendix

In contrast to the trends in existing language models, the importance of prompt engineer-
ing has surged in the LLMs era. This has ushered in an era where even non-developers
can easily achieve desired results. However, prompt engineering is still considered a
temporary solution applicable only to specific tasks [50]. Although LLMs demonstrate
outstanding performance in natural language interactions, crafting appropriate prompts
to consistently induce desired results remains a challenging task. Even in the field of

Table 7. The refined prompts adopted for the GPT-3.5 and GPT-4 models in our experiments.

Classification
## instruction
We are in the Korean speaking education.
Please compare the two given sentences and classify them 
as correct, incorrect, or chat.
A is the correct sentence, and B is the sentence for com-
parison.

## rules
just select one in correct, incorrect or chat, and print 
only the results of classification. 
1. correct - if B is semantically and grammatically cor-
rect compared to A. they don't have to be exactly same.
2. incorrect - if B is semantically and grammatically in-
correct compared to A but relevant to A.
3. chat - if two sentences are not relevant.

## two sentences 
A. {}
B. {}

generation
## instruction
You are engaged in role-playing Korean speaking education 
for second language foreigners.
Refer to the previous conversation history of <spk1> 

and <spk2>, and response briefly in Korean to the last 
utterance.

Do not output tokens for <spk1> and <spk2>.

## previous conversation
{}
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education, various stakeholders, including teachers and students, attempt prompt craft-
ing. However, despite the high performance of LLMs, prompt engineering is not an easy
task [51]. Consequently, prompt engineering still has ad hoc and subjective aspects in
the current context [52].

Recognizing these limitations, we used prompt engineering to craft prompts and
derive optimal results from ChatGPT. The finalized prompts are as follows (Table 7).
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Abstract. Learning is a social process. However, online learning is char-
acterized by social isolation. We present an AI social actor, SAMI, for
fostering social interactions in online classrooms. SAMI (Social Agent
Mediated Interactions) aims to mitigate the potentially adverse impact
of social isolation on the learning experience and emotional well-being
of geographically dispersed online learners in asynchronous educational
settings. SAMI connects learners based on their shared identity consid-
ering student location, hobbies, and academic interests. It also aims to
enhance the feeling of “belongingness” felt by the students in the com-
munity of online students. SAMI has been deployed at Georgia Institute
of Technology in several online classes with over 11000 students in the
past two years. We describe our findings from student surveys to gauge
SAMI’s effectiveness.

Keywords: Adult Learning · Online Education · Social Presence AI
Social Actor · Community Building

1 Introduction

Online programs are becoming ubiquitous in higher and continuing education.
With their growing popularity, educational institutions must ensure that online
learners have a learning experience that is at least as meaningful and effective
as that of in-person learners. In this context, an obvious challenge posed by
online education is the lack of face-to-face interactions between students who
are geographically dispersed and are often receiving asynchronous instruction.
This is especially true for adult learners in online education. Adult learners often
struggle to accommodate competing commitments to their coursework, full-time
jobs, and families, and thus typically have little to no time for building social
connections in their online classrooms [1]. The problem is further exacerbated by
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the size of online classrooms that have hundreds, if not thousands, of students.
Online learners would need to tediously search through faceless posts devoid
of social cues on the class discussion forum to identify those with whom they
may want to reach out to connect. Even if they did this, they may hesitate to
reach out to express their inclination to connect. The resulting lack of social
interaction hinders students from projecting themselves as people with emotions
and social needs in the class. This social isolation denies online students cognitive
learning benefits of collaborative thinking that often leads to shared construction
or discovery of knowledge [2–4]. Further, online students may struggle to develop
the feeling of “belongingness” in the classroom community, that is, the feeling
they identify with other students. This deficit can adversely impact a student’s
well-being and emotional health, and the desire to stay and complete the program
of study [5–7].

Artificially intelligent (AI) social actors offer potential means for fostering
social interactions in online classrooms [8]. The current AI techniques seem adept
at leveraging natural language generation to bring spontaneity and randomness
to online interactions, thus offering the potential for enhanced user (student)
engagement. With this perspective, we make the following research contribu-
tions. First, we have developed a new version of an social AI actor named SAMI
to help online learners make social connections based on their shared identity.
Second, critical aspects of SAMI’s functionality are enhanced by generative AI
sourced from OpenAI’s ChatGPT. Third, SAMI uses generative AI in conjunc-
tion with a knowledge base of student models represented as knowledge graphs.
Fourth, SAMI has been routinely deployed in several online classes with thou-
sands of students. Finally, it requires only modest computational resources to
scale SAMI to any number of classes.

2 Related Work

The importance of social context in support of learning has been recognized for
a long time. Dewey observed in 1897 “that the educational process has two sides
- one psychological and one sociological; and that neither can be subordinated
to the other or neglected without evil results following” [9]. This viewpoint has
gained much urgency with the increasing popularity of online education where
social isolation, if left unchallenged, can be more a rule than an exception [10].
More recently, Ashar and Skenes [5] highlighted the role of the social environment
in keeping students engaged in learning activities in an online environment.

Garrison et al. [2] put forth the framework of Community of Inquiry that
posits social presence - the ability of learners to project their personalities and
emotional needs into classrooms - as one of three crucial elements that enable an
effective higher education experience, and its implications for building functional
online learning communities (cognitive presence and teaching presence are the
other two). Sun et al. [11] focus on online learners’ community-building practices
and find these are motivated either by the discovery of shared identity or the
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desire to fulfill academic or professional goals. In [12], authors note that discov-
ering students with a common group identity also promotes collective efficacy,
the belief in the group’s capacity to achieve shared goals.

In earlier work, Brooks et al. [13] note the lack of affordances promoting
collaborative learning in traditional learning management systems. To alleviate
this shortcoming, the authors present a suite of tools explicitly linking the col-
laboration of learners to learning artifacts in the learning management system
to promote social aspects of learning. More recently, Wang et al. [14] examine
the design implications of technology interventions to foster community build-
ing in online classes and present an early implementation of a social AI agent.
They report results from student surveys that validate the importance of shared
identity in creating online communities. They extend this work in [15,16] with
co-design workshop studies with online learners to identify learners’ design pref-
erences for an AI agent tasked with promoting social connectedness and probe
potential ethical concerns. Taking cues from this work, we present here the design
and implementation of a new version of SAMI and its deployment in several
online classes.

3 SAMI System Design

Fig. 1. SAMI’s architecture

Figure 1 illustrates SAMI’s architecture. SAMI has a modular design with
five modules: a module that hosts the class discussion forum API; a module
for natural language processing (NLP); a knowledge base of graphs representing
student models; a module for matchmaking; and a module for response cre-
ation. Any module can easily be changed or upgraded independently of other
modules. Deployed in an online class, SAMI interacts with students through a
dedicated thread on the Ed Discussion forum or a dedicated Slack channel. Stu-
dents are asked to post their self-introductions at the beginning of the semester
and to append hashtag #connectme to consent to SAMI analyzing their posts
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for matchmaking. Once the number of posts reaches a critical threshold, they
are passed to the NLP module in a batch. Figure 2 shows a sample student
introduction post.

3.1 Natural Language Processing Module

The NLP module is concerned with Named-Entity Recognition (NER). Specifi-
cally, it analyzes student posts that contain the #connectme hashtag to extract
student location and other places of interest mentioned in the introduction; the
time zone; hobbies; the intended specialization; and past and future courses of
interest. The NER functionality is sourced from OpenAI’s ChatGPT by passing
student introduction posts along with an appropriate prompt for each entity
type to the OpenAI API. Leveraging ChatGPT for common NLP tasks such
as classification and NER obviates the need for gathering training data to build
and train task-specific machine learning models, thus greatly simplifying SAMI’s
architecture and development [17]. It also reduces the task of adding additional
named entities for matchmaking to prompt engineering. The extracted named
entities are highlighted in the introduction post in Fig. 2.

3.2 Knowledge Base Module

The output of the NLP module is a dictionary containing student IDs along with
associated named entities, and it is passed to the knowledge base module, which
is responsible for constructing a Neo4j graph database using data received from
the NLP module. The knowledge graph consists of two types of nodes: student
IDs and named entities. A node for a particular student ID is connected to all
named entities extracted for that ID; more than one student ID node may be
connected to a given named entity node. Figure 3 shows a truncated example of
the knowledge graphs for just two students. The knowledge base module exposes
its graph data through an API that can be queried using Neo4j’s graph query
language (Cypher).

3.3 Matchmaking Module

The matchmaking module extracts data from the knowledge base to find the best
matches for a student based on their shared identity based on student locations
and other places of interest; their time zones; hobbies; desired specialization in
the program of study; and past and future courses of interest. A student is a
match candidate for another student if their respective nodes are connected to
one or more of the same named entities, that is they share one or more elements
of identity. The matchmaking module computes a pair-wise match score based on
the number of shared named identities between students. The higher the number
of shared named entity nodes between two students, the higher the match score
for the pair. The output of the matchmaking module is sent to the response
creation module, and it is a dictionary consisting of student IDs along with five
top matches for each student.
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Fig. 2. At the top is an example self-introduction post made by a student in a dedicated
thread on the class discussion forum. The named entities in the post are highlighted
with a box around them. At the bottom is SAMI’s feedback to the student based on
this post.

3.4 Response Generation Module

The response creation module is responsible for generating SAMI’s responses for
students. It uses ChatGPT to craft diverse and friendly human-like responses to
help increase student engagement. Input data for responses are sent along with an
appropriate prompt to the OpenAI API for this purpose. The crafted responses
received from ChatGPT are then forwarded to the class discussion forum API
for posting as responses to the student introduction posts. The module creates
three types of responses: feedback and match responses for each student, and a
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Fig. 3. A truncated example of the SAMI’s knowledge graphs.

summary response for the class. The type of response created depends on the
option selected when SAMI’s code is executed.

Figure 2 shows an example of a feedback response. This is the first response a
student receives from SAMI, and it uses data queried from the knowledge base.
It informs the student what knowledge SAMI has extracted about her from her
introduction post. It also asks the student to inform SAMI of any errors in the
extracted information.

Figure 4 shows an example of a match response given to a student; the
response is constructed using match data output by the matchmaking mod-
ule. As mentioned above, SAMI suggests the names of five students as potential
matches. The name of each suggested match student is an HTML link; clicking
on it takes the student to the match student’s introduction post. The student
can then post a message to the match; or click on a “Click to say Hi” link to show
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Fig. 4. An example of SAMI’s match response to a student introduction post. SAMI
suggests five peers as potential matches based on shared identity. The student can click
on a match’s name to be taken to her introduction post. They can also click to say
“Hi” to a match.
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an interest in connecting. We can track student clicks as a measure of SAMI’s
efficacy in connecting students.

The final response output by SAMI is the summary response. It consists of
class statistics derived from student information stored in the knowledge base.
Figure 5 shows an example of a summary response. The summary response is
motivated by the desire to increase the feeling of belonging among the students,
that is, the feeling that they belong to the community (class) and that they
identify with other students. This, in turn, can have a salutary effect on their
sense of social presence.

Fig. 5. An example of SAMI’s summary response. For the sake of brevity, we just
show the hobbies summary. Similar statistics are displayed for other named entities,
e.g., countries, cities, time zones, hobbies, specializations, courses, etc.

3.5 SAMI on Slack

Asynchronous classrooms communicate in different ways, with some utilizing
class discussion forums, such as Piazza or Ed Discussion, and others utilizing
instant messaging platforms, such as Slack. To make SAMI a truly modular pro-
gram that can slot into any classroom, it has been our goal to make SAMI work
on any online form of communication, and behave consistently across the differ-
ent platforms. As such, SAMI on Slack behaves the same as previous iterations
of SAMI deployed on class discussion forums, including how it communicates
with the other modules and the way it directly responds to students who have
posted messages addressed to it.
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4 Results and Discussion

Various versions of SAMI have been deployed in many large online graduate-level
classes in the Online Master of Science in Computer Science (OMSCS) program
at Georgia Institute of Technology. Versions of SAMI before Summer 2023 used
pattern recognition for extracting named entities from introduction posts and
provided hard-coded responses to students; these were deployed in classes with
about 8000 students enrolled. The current version employing ChatGPT was first
deployed in Summer 2023 and it offers a more engaging experience for students
with its more varied and human-like responses. Over 3000 students have had an
opportunity to interact with this version of SAMI.

4.1 Early Results

During the deployment of SAMI in Fall 2019 in two online classes, we conducted
three short surveys over the semester to gather student feedback on SAMI [14].
These three surveys served different purposes: Survey 1 (S1, n = 601) to under-
stand online learners’ current practices in building social connections, Survey 2
(S2, n = 359) to collect qualitative feedback from students on SAMI, and Survey
3 (S3, n = 431) to quantitatively evaluate the effectiveness of SAMI. Through
mixed-methods analysis on these survey results, we found that students were
overall positive about SAMI. However, students reported mixed experiences and
opinions on the actual usefulness of SAMI in fostering social connections among
online learners.

Based on students’ responses from S2, we found that students were able to
form connections through the shared identity highlighted by SAMI. For exam-
ple, some students reported that they used SAMI’s responses to connect with
others who are located in the same area, or even formed local study groups. By
highlighting students’ shared identity, SAMI also helped online learners foster a
sense of “belongingness” in he class. One student said, “I think the personalized
response fosters inclusion and collaboration in the class. It helped me have a
sense of belonging.”

However, students also pointed out that while the responses provided by
SAMI are interesting, they are not always actionable given that SAMI’s response
did not trigger an action as much as they had expected. Echoing with this
feedback, S3 responses also showed that among all students who opted-in to
receive SAMI’s recommendations, 53.4% of the students didn’t connect with
anyone, 19.9% students connected with five or less students, and 7.85% students
connected with more than five students.

4.2 Intermediate Results

In 2021, we conducted semi-structured interviews with 26 students in the
OMSCS program in which SAMI was deployed [16]. We analyzed the inter-
view transcripts using thematic analysis. Through the interviews, we found that
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SAMI was able to improve the visibility of social information and increase stu-
dents’ feelings of accountability in remote social interactions. Students reported
that SAMI made social signals visible among students by highlighting students’
willingness to build social connections. Given that students needed to opt-in by
including #connectme in their self-introduction, others also interpreted this as a
signal of whether students were willing to build social connections. We also found
that SAMI raised awareness of potential social companions for online learners
by highlighting online learners’ shared identities, such as their similar hobbies
and locations.

While SAMI was able to facilitate online learners’ social connections by mit-
igating these challenges, students also voiced their concerns about SAMI. One
concern that was frequently brought up by online learners was the lack of trans-
parency of SAMI’s working mechanism. We found that students wanted to learn
more about how SAMI came up with the recommendation for them to better
communicate with SAMI for further improvements. This suggests a need for
self-explanation in SAMI [18].

4.3 Results from SAMI on Slack

SAMI on Slack was deployed in an in-person course at Georgia Tech in Spring
2023 that utilized Slack as the online communication platform. Using exported
data from Slack, it is possible to compare the number of students who were in
one channel to another channel. The #general channel, which every student is
automatically enrolled in, contained a total of 77 users. Meanwhile, the SAMI
channel, which students had to opt in, contained a total of 75 users. This means
at maximum, only two students used the Slack server without joining the SAMI
channel to interact with SAMI.

In terms of interaction, 81% of students who responded to an in-class survey
reported interacting with SAMI. Those students were asked to assess SAMI on
a scale of 1 to 5 (with 1 being the worst and 5 being the best). Of the 30
students who responded to this question, 44% responded with a rating of 5, 35%
responded with a rating of 4, and 21% responded with a rating of 3.

In terms of efficiency, 76% of students who responded to the survey reached
out to other students based on SAMI’s suggestions, and of those who were
reached out to, 66% responded at least once. Later in the semester, when a
project required students to form groups, 80% of students relied on SAMI’s sug-
gestions to form their groups. Of that 80%, 25% relied exclusively on SAMI’s
matches, while 75% relied on a combination of SAMI’s suggestions and other
previous experience with students.

4.4 Recent Deployments

In our more recent deployments, over 3000 students in various classes have been
exposed to the ChatGPT-based SAMI. Table 1 lists some of the salient features
of these deployments.
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Table 1. SAMI deployments since Summer 2023 (ChatGPT-based SAMI)

Semester Course Discussion Forum # Students

Summer 2023 Human-Computer Interaction Ed Discussion 385

Summer 2023 Knowledge-Based AI Ed Discussion 216

Summer 2023 Introduction to Cognitive Science Slack 115

Fall 2023 Human-Computer Interaction Ed Discussion 691

Fall 2023 Knowledge-Based AI Slack 482

Spring 2024 Knowledge-Based AI Ed Discussion 517

Spring 2024 Machine Learning for Trading Ed Discussion 1280

Table 2. SAMI class usage in Human-Computer Interaction, Fall 2023

# students # self-introductions # opt-ins # Match name clicks # click-to-say-hi clicks

691 532 (77%) 249 151 87

Table 2 shows data highlighting the degree of student engagement with SAMI
in a class. This class had a student enrollment of 691. 532 (77%) students
posted their self-introductions and 249 (47% of those who introduced themselves)
opted in to have their posts analyzed by SAMI for match recommendations. We
recorded 151 clicks by students on the names of students recommended as poten-
tial matches and 81 clicks made by students to say “hi” to these matches.

5 Conclusion

We have presented an AI actor, SAMI, for fostering social interactions in online
classrooms. SAMI aims to mitigate the potentially adverse impact of social iso-
lation on the learning experience and emotional well-being of online learners
by connecting them based on their shared identity derived from their location,
time zone, hobbies, and academic interests. It also aims to enhance the feeling of
“belongingness” felt by the students in the community of online students. While
earlier versions of SAMI used pattern recognition for extracting named enti-
ties and methods from knowledge-based AI such as knowledge graph and graph
matching, the newer version combines generative AI with knowledge-based meth-
ods for better matchmaking and engaging student experience. SAMI has been
deployed at Georgia Institute of Technology in several classes with over 11000
students over the past two years and its deployments can be easily scaled to any
number of classes. Out initial results from indicate encouraging signs of student
engagement with SAMI.
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Abstract. In this paper, we present a Systematic Literature Review
(SLR) on the state-of-the-art in Artificial Intelligence in Education
(AIED) focusing on methodological contexts and constraints of the
research landscape. To do so, we built on existing works and extended
them to cover the latest research advancements in the field over the past
five years. We aimed at covering all educational levels and retrieving
important data regarding the planning and execution of research stud-
ies and the robustness of results. In total, we reviewed 181 papers and
answered three research questions, relating to the educational context of
AI use, the methodology and study design utilized in AIED research, and
the type of AI algorithms and technologies used in education. Our find-
ings suggest that research in AIED primarily focuses on formal, higher
education and that there is a demand for robust and rigorous scientific
evidence of the effectiveness and impact of AIED. Furthermore, the find-
ings indicate that the most popular AI technologies currently studied are
traditional AI algorithms, usually used for prediction, classification, or
clustering. Based on our analysis, we discuss practical implications that
can serve as inspiration and guidance for future research initiatives.

Keywords: artificial intelligence in education · research ·
methodology · systematic literature review

1 Introduction

Research on Artificial Intelligence in Education (AIED) has been a prominent
topic for over 30 years. However, recently it gained attention due to technological
advances in Artificial Intelligence (AI) and is projected to reach its peak by the
year 20251. In the past five (5) years alone, we identified nine (9) systematic
literature reviews (SLRs) about AIED that aimed to document the research
landscape (see Table 1).
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Table 1. Existing Systematic Literature Reviews on AIED

SLR Title Years #Reviewed

Covered Publications

Systematic review of research on

artificial intelligence applications

in higher education-where are the educators? [20] 2007–2018 146

Application and theory gaps during the

rise of artificial intelligence in education [3] 1999 -2019 45

AI in education: A systematic literature review [16] 2010–2019 23

A systematic review of AI role in the

educational system based on a proposed

conceptual framework [18] 2005–2021 51

Artificial intelligence in online

higher education: A systematic review

of empirical research from 2011 to 2020 [11] 2011–2020 32

Affordances and challenges of artificial

intelligence in K-12 education: A systematic review [6] 2011–2021 169

Artificial intelligence applications

in K-12 education: A systematic literature review [19] 2011–2021 210

Systematic literature review on opportunities,

challenges, and future research recommendations

of artificial intelligence in education [4] 2012–2021 92

Artificial intelligence in higher education:

the state of the field [5] 2016–2022 138

Most of these reviews explored the integration and use of AI in specific levels
of formal education, such as K-12 [6,19] or higher education [5,20], while one
review explored the whole range [4]. A common theme addressed in the SLRs was
the benefits, opportunities, challenges, and critical implications that follow AIED
[4,6,16]. For example, [20] explored – among others – the ethical implications and
risks associated with the use of AI in education, while [6] also highlighted several
challenges, such as ethical concerns regarding AI use, ensuring fairness and equal
opportunities, providing sufficient training and support for teachers, addressing
technical infrastructure requirements, and ensuring AI’s integration and long-
term sustainability in education. [16] pointed out the scarcity of publications
presenting the relationship between opportunities, benefits, and challenges. Some
reviews focused on the geographical distribution of research, pointing out that
certain countries lead the AIED-related publications [3,5]. Finally, other topics
discussed in these SLRs were the most prominent AI technologies and algorithms
presented in research publications [3,11], the purpose of use, roles, and functions
of AI [6,11,18,20].

The above signifies a plethora of research on AIED, especially after the
COVID-19 pandemic, strengthened by recent advances in AI technologies, specif-
ically generative AI. It is critical to monitor and document these works and
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keep an up-to-date state-of-the-art map regarding the AIED research landscape.
However, there are evident gaps in the information and level of detail docu-
mented. For example, SLRs that examine the use of AI on all levels of education
[3,4] focus mostly on the geographical distribution of research, opportunities,
and challenges. On the other hand, SLRs that focus on specific education levels
(for example, higher education or primary education [19,20]) delve into topics
related to the use and purpose of AI in education. Another gap concerns the
documentation of data that AI algorithms and AI systems use to achieve their
goals. Existing SLRs provide minimal to no information about the data types
or data sources, while few point out potential limitations or risks due to data
privacy and ownership. We argue that there is a need to systematically docu-
ment information regarding the AI technologies used for all education levels and
their purpose. Most importantly, it is crucial to identify the data sources and
types typically employed by AI applications in education. Additionally, there is
no systematic evaluation of the research studies under review regarding their
scientific rigorousness and robustness of the evidence. We acknowledge the diffi-
culties that the organization and realization of such studies entail. Nonetheless,
we argue that it is imperative to document the magnitude of studies in terms
of population size, duration, reproducibility, and applicability, along with their
methodological designs, to assess the robustness of their findings. This require-
ment is also imposed by the need to ensure fair, accountable, transparent, and
ethical AI [9].

The contribution of this work is to gather insights regarding the method-
ological contexts and constraints of the AIED research landscape by building on
existing works and extending them to cover the latest research advancements in
the field over the past five years. In particular, we aimed to retrieve important
information regarding the planning and execution of research studies that can
potentially provide information about the robustness of results and findings.

For our research purposes, we formulated the following Research Questions
(RQs):

RQ1. In which educational contexts is AI used?

RQ2. What are the methodological and study designs employed in AIED
research?

RQ3. What AI algorithms and technologies are used in education?

To answer our RQs, we used the SLR of [20] as a blueprint, and we extended
it further to: a) cover all research literature from 2019 to 2023 (5 years) appear-
ing in journal publications; b) cover all education levels, including adult and
lifelong learning; c) retrieve information regarding the planning and realization
of research studies and the robustness of results.

In the following sections, we discuss the methodological setup of this work.
Then, we present our findings (Sect. 3), and we answer our research questions
along with a contextualized discussion on the need for evidence-based approaches
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for AIED (Sect. 4). We conclude with a brief summary of our contribution, lim-
itations and future work (Sect. 5).

2 Methodology

To carry out the SLR, we followed the PRISMA statement [12,14] that require
four phases for selecting articles: a) Identification, b) Screening, 3) Eligibility and
4) Inclusion. For the Identification, we searched the databases Web of Science
(WoS)2, EBSCO3 and Scopus4 using the pre-defined search term:

Search Query = (“artificial intelligence” OR “machine intelligence” OR
“intelligent support” OR “intelligent virtual reality” OR “chatbot*” OR
“machine learning” OR “automated tutor” OR “personal tutor*” OR
“intelligent agent*” OR “expert system” OR “neural network” OR “nat-
ural language processing”) AND (“higher education” OR college* OR
undergrad* OR graduate OR postgrad* OR “K-12” OR kindergarten* OR
“corporate training*” OR “professional training*” OR “primary school*”
OR “middle school*” OR “high school*” OR “elementary school*” OR
“vocational education” OR “adult education”) AND (learn* OR student*)

The search string derived from the SLR of [20], and it was used to retrieve rel-
evant journal publications from the pre-selected databases. After retrieving the
search results, we concluded the Indentification phase by eliminating duplicates.
For Screening, the publications were reviewed based on their title and abstract
by two researchers in parallel who eliminated publications not considered rele-
vant. During the Eligibility phase, the remaining records were reviewed based on
their full texts: Two reviewers worked in parallel using the exclusion and inclu-
sion criteria (Table 2) adapted from [14]. To support the reviewing process, we
compiled a coding scheme with examples for each code. To train the reviewers,
we used three papers to demonstrate the coding process. During training, the
reviewers could ask for clarifications and take notes. Then, we carried out two
reviewing steps. For the first step, we asked the reviewers to code together a
set of ten (10), randomly selected papers to establish a common understanding.
During this step, we provided additional clarifications and examples for the cod-
ing scheme and refined it further when needed. For the second step, we asked
the reviewers to code separately a set of 20, randomly selected, papers. Then,
we asked the reviewers to compare and discuss their results until they reached
a consensus. If consensus was not possible, a third reviewer, an expert on AIED
and educational technologies, was involved. This process was repeated until all
publications were reviewed.

During the Inclusion phase, all remaining publications were included in the
corpus for the systematic review. Two of the co-authors split the corpus and

2 https://www.webofscience.com/wos/woscc/.
3 https://www.ebsco.com/.
4 https://www.scopus.com/search/.

https://www.webofscience.com/wos/woscc/
https://www.ebsco.com/
https://www.scopus.com/search/
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Table 2. Exclusion and inclusion criteria for formal screening of collected records
adapted from [14]. Formal criteria relate to the formalization of the publications, such
as the working language, the number of pages or the record’s availability. Content-
related criteria address the topic of the publication and were established in accordance
with our RQs.

Formal Screening

Exclusion Criteria Inclusion Criteria

The full text of the record is not available The full text can be downloaded

The record is not written in English. The record is written in English

The record is not published The record is published

in a peer-reviewed journal in a peer-reviewed journal

The record is not substantial (< 7 pages). The record is substantial (>= 7 pages).

Content Screening

Exclusion Criteria Inclusion Criteria

The record does not address the use of AI The record addresses the use of AI

The record does not address education The record addresses education

The record does not involve a research study The record involves a research study

reviewed the papers again independently to confirm the original findings. If in
doubt, the third co-author was involved. The number of publications over the
different phases of the process is shown in Fig. 1. The list of articles that were
included in the review and the coding scheme are publicly available at http://
tinyurl.com/3rf5jzw6.

Fig. 1. The number of papers for each phase of the reviewing process according to
PRISMA.

3 Results

In total, we reviewed one hundred and eighty-one (181) articles published in
sixty-seven (67) journals from 2019 to 2023. The three (3) leading journals in

http://tinyurl.com/3rf5jzw6
http://tinyurl.com/3rf5jzw6
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terms of number of publications were the Education and Information Technolo-
gies journal (19 publications, 11%), the British Journal of Educational Technol-
ogy (11 publications, 6%), and the International Journal of Educational Technol-
ogy in Higher Education (9 publications, 5%). Figure 2 presents the distribution
of publications over the last five (5) years. We note that for 2023, we only con-
sidered papers available by April 1st, 2023.

Fig. 2. The distribution of published papers over the past 5 years, from January 2019
to April 2023.

To align with existing SLRs, and to gain some understanding regarding
potential hubs of AIED research, we will first present some “demographics” of
the literature under review. Overall, the first authors of the research publications
came from forty-eight (48) countries in terms of affiliation. The most prominent
countries in terms of number of publications were the USA (37 publications,
20%), and China (18 publications, 10%). Next, we analyzed the scientific disci-
plines of the first authors of the publications. To classify various affiliations, we
used the taxonomy proposed by the German Research Foundation (DFG)5. Our
findings showed that most research comes from engineering sciences (88 publi-
cations, 49%) followed by humanities and social sciences (62 publications, 34%).
Six (6) affiliations could not be retrieved.

3.1 Educational Contexts and AI (RQ1)

From our results, we identified four cases regarding the educational contexts that
appear in AIED research: a) Higher education (146 publications, 81%); b) K-12
Education (32 publications, 18%); c) Vocational Education (2 publications, 1%);
d) Mixed Levels (K-12 and Higher Education) (1 publication, 2%).

Higher education dominates AIED research. This finding was not surprising
due to the affordances and potential that higher education offers for conducting
5 https://www.dfg.de/download/pdf/dfg im profil/gremien/fachkollegien/

amtsperiode 2020 2024/fachsystematik 2020\discretionary-2024 en grafik.pdf.

https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/amtsperiode_2020_2024/fachsystematik_2020discretionary {-}{}{}2024_en_grafik.pdf
https://www.dfg.de/download/pdf/dfg_im_profil/gremien/fachkollegien/amtsperiode_2020_2024/fachsystematik_2020discretionary {-}{}{}2024_en_grafik.pdf


168 I.-A. Chounta et al.

research. One can argue that researchers are inclined to conduct studies within
their own institutions since they are already familiar with the context. Other
reasons could be stakeholders’ familiarity with educational technologies and the
level of integration of educational technologies within the curriculum. Also higher
education students – as adults – are potentially the most accessible group in
terms of ethical requirements that studies must adhere to.

3.2 Methodological and Study Designs in AIED (RQ2)

To answer this question, we collected information regarding the methodologies
employed (experimental or observational) in state-of-the-art AIED research, the
study design regarding population size, and repeatability (that is, whether the
study took place only once or repeated times), the analytical methods employed
(qualitative, quantitative or mixed-methods) and the data types and sources
that researchers collect and/or employ in their approaches. We classified a study
as experimental if researchers introduced an intervention, a test under con-
trolled conditions, and studied the effects following the definition6 provided by
the American Psychological Association (APA). Studies that were not classi-
fied as experimental were tagged as observational. This scheme did not always
align with publications’ descriptions that used the term “experiment” in their
methodological description but did not meet our criteria for an experiment.

Many studies involved the training of ML models for predictive purposes,
such as predicting student dropouts. Although these studies do not qualify as
experimental based on our criteria, we acknowledge their importance. Most
publications presented studies that followed observational methods (135 pub-
lications, 75%) while the rest of the publications (46 publications, 25%) pre-
sented experimental studies with two conditions (control, experimental) or more.
Among the observational studies, 121 employed quantitative methods (66.85%),
4 employed qualitative methods (2.21%), and 10 conducted mixed methods stud-
ies (5.52%). On the other hand, 31 experimental studies used quantitative meth-
ods (17.13%)), 1 study used purely qualitative methods (0.55%), and 14 used
mixed methods (7.73%). The most common method for data collection was “sur-
veys”, used by 76 studies (41.99%) to collect student responses typically via tools
such as questionnaires. This was closely followed by the students’ “academic
data” from platforms such as learning management and student information
systems (75 studies, 41.44%). Other data types and sources employed involved
assessment data (such as grades and knowledge-tests), student trace data from
applications’ logfiles, and other learning artifacts (such as essays, and student
reports).

Regarding repeatability, most publications (177 publications, 98%) presented
one study. Only four (4) publications (2%) reported repeated measures. Finally,
in terms of study population size, most publications (53 publications, 29.28%)
presented studies with less than 100 participants, followed by 44 publications

6 https://dictionary.apa.org/experiment.

https://dictionary.apa.org/experiment
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(24.31%) ranging from 100 to 500 participants. Only 24 studies (13.26%) dis-
cussed studies with a population size of more than 10K (Fig. 3). We want to
note that, in our case, population size does not always refer to the number of
participants. It can instead refer to data entries or data points (such as the
matriculation records in a time period). However, we tried to match, based on
the information that was available in the reviewed publications, the number of
participants to the data records used in the studies.

Fig. 3. The population sizes of research studies reported in the literature review.

3.3 AI Algorithms and AI Technologies Used in Education (RQ3)

We followed a combined bottom-up and top-down approach to retrieve and
classify the AI algorithms and technologies used in education as referenced in
research publications. First, two reviewers extracted this information from the
publications under review, and then we categorized them based on existing lit-
erature. Overall, traditional machine learning algorithms were most frequently
in the publications, either on their own or in combinations, such as Random
Forest (42 references), Regression (36 references), Support Vector Machines (27
references), and Bayesian Networks (20 references). These algorithms were used
mainly for prediction, clustering, and classification tasks. NLP methods were
referenced 49 times, in relation to conversational agents and chatbots (17 refer-
ences), and BERT models (11 references). Finally, publications referenced neural
networks (12 references), Intelligent Tutoring Systems (5 times), and Recom-
mender Systems (5 times).

Regarding the purpose of using AI, publications focused on predicting the
academic performance of students (69 references), and predicting students at-risk
of dropping out. Algorithms such as Random Forest, Support Vector Machines
and Regression were commonly used for such purposes. Other usages of AI
revolved around supporting students in their career choices (23 references), auto-
mated evaluation and assessment in academic contexts (12 references).

Our findings confirm prior research [3] suggesting that traditional machine
learning algorithms are more popular and heavily used than advanced AI tech-
nologies such as deep learning and artificial neural networks. Additionally, we
saw a growing interest in NLP and NLP-related technologies, such as chatbots
and conversational agents, justified by recent advances in NLP.
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4 Discussion

4.1 In Which Educational Contexts is AI Used? (RQ1)

AIED research focuses, primarily, on higher education (see Sect. 3.1). This may
suggest that AI applications are limited to specific settings and not generalized or
adapted to serve multiple contexts. Also, the potential and impact of AI on other
important sectors, such as workplace and life-long learning, is not sufficiently
explored. We perceive this as a unique research opportunity to cross-validate
existing AI approaches for learning, such as ITSs, over a wide range of learning
contexts. To achieve this, it is necessary to involve stakeholders from diverse
settings and explore different aspects of learning.

4.2 What are the Methodological and Study Designs Employed
in AIED Research? (RQ2)

There is a need for robust and rigorous scientific evidence for the effectiveness
and impact of AIED (see Sect. 3.2). Most research studies are observational in
nature, with a limited population sample, limited applicability, and transfer in
new contexts. For example, studies may focus on AI models’ performance but
fall short in experimentally testing models in authentic contexts.

It is evident that we need to focus on multilevel, mixed-methods approaches,
as recommended by [15,17], and involve triangulation to allow for cross-
validation of findings.

Notably, a substantial number of studies have not made their data set open
access for various reasons, such as privacy [10] etc. Some authors state willingness
to make the data available on request [8,13], however there is a lack of inter-
operability standards in the community for communication and data exchange.
This affects the reproduction and cross-validation of findings necessary for open
science. This lack of standardization was also observed in reporting, making it
difficult to evaluate scientific rigor. For example, while reporting their choice
of AI technology, some authors reported vaguely, simply stating NLP or chat-
bots while some authors were more specific, reporting specific family of NLP
algorithms such as BERT.

4.3 What AI Algorithms and Technologies are Used in Education?
(RQ3)

The most popular AI technologies currently explored in the research are tradi-
tional AI algorithms, such as random forest and SVMs (see Sect. 3.3), often
employed in the context of predicting academic performance and student
dropouts. Additionally, the use of NLP is widespread either in combination with
chatbots and conversational agents or with regard to text mining and automatic
assessment. Although we acknowledge the growing body of literature regarding
generative AI for teaching and learning, the research landscape is still dominated
by traditional and basic AI approaches rather than performance-demanding AI
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technologies. This is perhaps due a limitation of our corpus containing studies
only up to early 2023.

4.4 Theoretical and Practical Implications

The SLR findings entail critical theoretical and practical implications for AIED
(in general) and ITS (in particular) research and practice. We envision that these
implications can serve as input and guide future research initiatives, ensuring sig-
nificant impact and innovation. We argue that the findings of this SLR make evi-
dent the need for: a) transparent communication of the use of AI in education, its
potential benefits and capabilities, and its challenges and opportunities to stake-
holders and the general public; b) the need for evidence-based approaches and
large-scale, longitudinal studies that will provide sufficient and acceptable indica-
tions of the benefits of AI in teaching and learning; c) standardization and open
access of data for reproduction and cross-examination of findings experimentally;
and, d) the opportunity to revisit traditional AI approaches and cutting-edge
technologies from the perspective of feasibility and applicability.

5 Conclusion

This paper presented an SLR about the research landscape in AIED that aimed
to provide complementary insights to the findings of [20] over the past 5 years,
regarding the robustness and rigorousness of methodological approaches applied
in the field and in relation to AI technological advancements. To that end, we
reviewed 181 research publications published from 2019 to 2023.

In this paper, we retrieved journal publications from three digital libraries
(WoS, EBSCO and Scopus). Thus, we acknowledge that we may have failed
to include in our review relevant and important publications. To identify AI
technologies used in research, we used the descriptions that the authors offered
in their publications. Thus, if some AI technology were inadvertently misrep-
resented, we would not be able to identify it. Similarly, AI technologies that
are part of a bigger group or known by different names, might have been not
accounted for. For example, BERT models have been categorized as either deep
learning or NLP, depending on the authors’ descriptions. In the case of reporting
population or sample size, we attempted to record the number of participants
per study. However, this was not always possible since some papers reported
instead population samples in terms of data points or data entries, for exam-
ple, the number of matriculations per academic year. Although, in some cases,
making the connection between data points and participants was straightfor-
ward, this was not always the case. We noticed some discrepancies between how
authors report their studies’ setup and the definitions of these designs, especially
regarding experimental studies. We acknowledge that our classification (experi-
mental vs. observational) is restrictive, and one would like to gain further insights
regarding diverse study designs employed in AIED research. Therefore, we see
a need for future work that will aim to document the methodologies employed
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in AIED research in relation to the outcomes and robustness of the evidence
they produce. At the same time, we acknowledge the complexity, and diversity
of study designs in AIED research and the importance of Design-Based Research
for the field.

Evidence-based practice indicates the need for building on solid scientific
foundations when introducing effective practices into daily life, as a means to
eliminate ineffective or plainly wrong approaches that rather rely on tradition,
personal beliefs, and assumptions [7]. This is especially important nowadays
because rapid technological advances require quick reactions regarding their inte-
gration and adoption, as several published calls for evidence regarding the effec-
tiveness and efficacy of AI and education indicate [1,2,9]. Creating opportunities
for in-situ research in coordination with practitioners, establishing good prac-
tices of rigorous reporting and data sharing, and promoting repeatability and
reproducibility efforts can contribute towards bridging the gap between research
findings and practical implementation.

We acknowledge the opportunities that AI can introduce for modern educa-
tion. At the same time, we argue that it is critical to establish solid evidence
regarding the impact of such technologies to leverage their potential.
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Abstract. Despite the increasing prevalence of inquiry-based learning
(IBL) platforms, IBL research still has many open questions in construc-
tivist contexts, such as when to offer help. In this paper, we explore wheel
spinning in an open-domain inquiry-based modeling platform. We estab-
lish why closed-domain conceptions of wheel spinning do not work well in
open domains, and we postulate key features of a working characteriza-
tion of wheel spinning for an open-domain IBL platform. We also present
a comparative quasi-experimental study of two groups of learners: While
both groups worked with the same publicly available IBL platform called
VERA, one group used VERA in a large graduate class at Georgia Tech
and the other group was composed of globally-distributed self-directed
learners (SDLs) who accessed VERA through various public websites.
We use sequential pattern mining on the results in order to determine
what wheel spinning looks like on the VERA platform and how to best
identify it. Generalizing, we apply this research to the quitting behav-
iors of SDLs. Finally, modeling both user groups’ action sequences into
Markov chains, we identify the stage at which an IBL platform may offer
proactive feedback to the learners.

Keywords: Inquiry-Based Learning · Wheel Spinning · Self-Directed
Learning · Sequential Pattern Mining

1 Introduction

As opposed to in-person tutoring, Intelligent Tutoring Systems (ITS) often lack
the ability to identify when the user is engaging in unproductive behavior [22].
To alleviate this gap, wheel spinning has become a well-researched theme in ITS
literature [27]. Research has postulated the value of using wheel spinning as the
foundation for ITS [26,27]. Accounting for wheel spinning is critical because it
has been correlated with loss of motivation and therefore quitting behaviors [20].

The most frequently used framing for wheel spinning was conceptualized by
Beck and Gong [8] and summarized by Zhang et al. (2019) [27] as “failing to
get three attempts correct in a row within the first 10 practice opportunities.”
However, methods to detect wheel spinning in the context of well-defined prob-
lems and answers do not transfer well to open-domain educational environments
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because the outputs of the latter are not easily broken down into knowledge
components [19].

In inquiry-based learning (IBL) platforms, the process of learning is often
more important than the content being taught, and they tend to be grounded
in more constructivist theories of education [6,21]. Given that open-domain and
IBL platforms vary greatly, it is difficult to develop a framing of wheel spinning
that is broadly applicable. Alternative conceptions and framings of wheel spin-
ning used when analyzing these platforms can be read in Sect. 3.2. One difficulty
that occurs when defining wheel spinning within these systems is separating it
from productive persistence, “The ability to steadily maintain an action or com-
plete a task despite failure or adversity.” [20] Previous research has demonstrated
methods of differentiating between productive persistence and wheel spinning
but only in closed-domain problems [17]. Further discussion of the value of pro-
ductive persistence is discussed in Sect. 3.4.

In summary, it is important to keep students engaging in productive per-
sistence, repeating productive paths of inquiry, while helping them away from
wheel spinning, repeating unproductive paths of inquiry. Therefore, we propose
the following framing of wheel spinning that applies to constructivist theory:
Wheel spinning occurs “when a user is unproductively taking actions that do
not correspond to an internal hypothesis or goal state, past the point of produc-
tive persistence.”

However, since there is no one correct answer in IBL platforms (or open-
domain learning systems more generally), how do we know when a users actions
do not correspond to their internal hypothesis or goal? In short, one must ask
them. There are many ways of doing this including think-alouds, affect recog-
nition, or perhaps deep learning in neural nets using massive data, if available.
Given that this research is hoping to serve as the foundation of a proactive IBL
platform, we are hoping to determine, in an automated fashion, when would be a
good time to offer tutoring in the system. Additionally, because this is prospec-
tive research, we are unable to benefit from the large amounts of data produced
by an already existing ITS system for data-dependent machine learning methods.

Instead, our research focuses on running a quasi-experiment where we asked
82 students from a graduate class in cognitive science at Georgia Institute of
Technology (a R1 university in USA) to click on an in-software coach request
button within the inquiry-based ecology modeling tool VERA (Virtual Ecologi-
cal Research Assistant) [2–4]. We then use sequential pattern mining (SPM) [1]
and data mining to develop a generalized conception of when a student might
be spinning wheels.

2 VERA: A Platform for Inquiry-Based Learning

VERA is made up of two main components: a conceptual modeling tool and
a simulation engine. Learners are able to model different ecological systems by
creating and modifying the system components and relationships between them.
These ecological systems are captured through a Structure-Behavior-Function



176 J. Kos et al.

model [13,23] that allows for agent-based simulations of ecological phenomena
[2].

Figure 1 shows the conceptual modeling interface that lets learners imagine
and model a diverse set of possible ecologies.

Fig. 1. VERA modeling interface. Coach request button looks like teacher in front of
chalkboard

Figure 2 shows the interface to the simulation engine, where student can
visualize their ecologies interacting as a time series of the population of the
species they modeled, where the x-axis tracks time in months and the y-axis is
population.

Fig. 2. Simulation Environment for VERA

In VERA, the simulation component acts as a feedback or evaluation step
where students can check the hypothesis of their conceptual model [2–4]. The
core of this process is similar to causal models developed by White et al. which
centered around model-simulate-refine loops [25]. VERA also provides access
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to coaches that provide help on the modeling process to the learners when
requested. At present, the coaches in VERA are reactive in that they offer advice
only when asked. We seek of develop proactive coaches that would provide guid-
ance to learners when they detect wheel spinning.

This research will demonstrate a methodology for identifying wheel spinning
in VERA. First, we will affirm that wheel spinning occurs in VERA. Second,
we will use sequential pattern mining to identify common patterns that a user
engages in before making a request to a coach for help. Third, we will generalize
this identification of wheel spinning to the end-of-session actions of self-directed
learners; these are learners that use the VERA platform on their own outside of
the classroom, and therefore have modeling behavior that corresponds to internal
goal states unknown to us instead of known classroom assignments. Lastly, we
will use Markov chains to estimate the best time to offer proactive help as part
of VERA.

3 Background

3.1 Inquiry-Based Learning

Research into IBL in open domains, particularly in the form of interactive learn-
ing environments, has seen a massive increase in popularity over the years [11].
IBL gives learners the opportunity to practice meta-cognitive skills, which have
been shown to play a significant role in academic achievement and learning out-
comes [9,11,12]. Additionally, higher meta-cognitive skills are correlated a higher
likelihood to engage in help-seeking behavior [12]. IBL, however, struggles with
keeping students on productive learning paths, and the question of how to keep
students from engaging in unproductive modes of inquiry is still open [10].

This motivates the need for a proactive coaches in IBL platforms such as
VERA that can identify when a student is spinning wheels and offer help. Stu-
dents who are less likely to ask for help have a direct need for a proactive coaches
that can scaffold their experience in an IBL education system, potentially alle-
viating the lack of meta-cognitive skills that prevented them from seeking help
in the first place. This research hopes to answer the question of “when” an IBL
would offer feedback by developing a framing for and centering identification of
wheel spinning in open domains. The question of what that feedback would look
like and how it will be presented is left to future research.

3.2 Wheel Spinning

Wheel spinning has been linked to both lower motivation in learners as well as
an avoidance in help seeking behaviors [20]. For this reason, it is important to
construct and develop a methodology by which wheel spinning can be identified,
and with the eventual intervention of ITS, rectified. As mentioned previously the
most common conception of wheel spinning involves the failure of answering the
same question correctly three times in a row within 10 attempts. This framing is
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the most popular and works well with the literature on knowledge components
[27].

Zhang et al. has research that looked at six different wheel spinning detectors
using two different criteria across multiple datasets, but the given detectors or
criteria are not generalizable to inquiry-based or open-domain problems [27].
Owen et al. discusses the importance of differentiating wheel spinning in a closed-
domain mathematics game [20]. In doing so, they relate wheel spinning to lower
gameplay efficiency, effectively tying the conception to a measurable goal state.
This manifests as a framing of wheel spinning as “a great deal of effort with
very little progress.” In this sense, this conception is closer to a constructivist
framing, as it does not specify explicit goal states and knowledge components.
However, it lacks a differentiation from productive persistence.

Next, this relation of lower gameplay efficiency relates to research from Bauer
et al. which uses sequence analysis in a protein folding scientific discovery game
Foldit [7]. While Foldit lacks clear goal states and specification of direct relation-
ships between a student’s current state and their final goal state, the game still
has a quantitative measure of success based on the energy level of the protein
folding. This allows a differentiation of high-performing and lower-performing
learners that is not directly applicable to VERA. However comparison with
Foldit would give us some idea of what wheel spinning would look like in a more
open domain.

3.3 End-of-Session Activities

End-of-session behavior for educational systems is still a growing field of research
[15,26]. There are many reasons to consider end-of-session actions including com-
pletion of the goal, frustration, or distraction [15]. Wu et al. researched the
quitting behavior of students within a digital game for learning genetics [26].
They found three categories of quitting behavior, one of which is exemplified
by students quitting after an extended period of not reaching their goal. This
matches our conception of wheel spinning and corroborates previous research
on the correlation between wheel spinning behavior and quitting behavior. The
authors come to a similar conclusion by suggesting that the research can be used
to dynamically change the difficulty of the student problem.

3.4 Productive Persistence and Quitting Behavior

Productive persistence, or grit, is highly correlated with achievement and long
term outcomes [20]. For this reason, it is important to differentiate between
productive persistence and wheel spinning, though it is challenging to do so [17].
Kai et al. (2019) did research on differentiating between wheel spinning students
and students engaging in productive persistence within a math game context
using a decision tree. This tree included a number of factors such as number of
attempts, time between problems, number of hints used, etc. In the context of
their closed-domain problem, they were able to identify different categories of
students that engage in wheel spinning. A possible indicator that a student is
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wheel spinning instead of productively persisting is quitting behavior. For this
reason, quitting behavior, especially as in seen in self-directed learning, will be
our comparison point by which we demonstrate a generalizable framing of wheel
spinning in IBL platforms.

3.5 Sequential Pattern Mining

SPM has made an impact across many fields in recent decades [24]. It aims to
identify patterns of behavior across multiple sequences, though further analysis
is required to identify significant or insightful results. Several pattern mining
techniques exist [14], and this paper uses a constraint-based SPM library devel-
oped by Wang et al. (2022) [24] which allows temporal data to supplement the
actions in isolation.

Much work has been done in applying SPM in ITS research where success or
performance can be measured objectively and quantitatively. For example, Chen
and Wang [9] demonstrated how SPM can be used to understand user actions in a
online physics simulation of buoyancy. Hansen et al. used both SPM and Markov
Chains to, respectively, quantitatively and qualitatively measure unproductive
student behavior in a mathematics educational system [16]. Additionally, Kin-
nebrew, Loretz, and Biswas used sequence mining in an IBL platform, Betty’s
Brain, in order to differentiate between high and low performance students and
therefore productive and unproductive learning behaviors [18].

There is also recent work with SPM in VERA that grouped users and their
behavior into three distinct approaches: observation, construction, and explo-
ration [5]. Our research builds in part on this prior work.

4 Methodology

4.1 Cohorts

Two groups were compared. The first is a set of independent self-directed learners
(SDLs), identified as 19 users who registered on VERA without academic email
addresses from 2021 to 2023. It is assumed that these users had less structure
and less guided behavior than users for whom working with VERA was part of a
directed assignment. While a tutorial is available on the VERA site, there is no
guarantee that the users follow the tutorial in order to understand how to use
VERA. Additionally, we are unable to know what these users’ goal states were
and whether they reached them before quitting.

The second group was a set of 82 students who took an online graduate course
in cognitive science at Georgia Tech in the summer term of 2023. These users
had an assignment that involved performing multiple experiments with VERA.
The purpose of the assignment was to give students the experience of cognitive
science in action, in the form of tools for conceptual modeling and simulation,
based on cognitive theories of scientific reasoning as well as science learning.

Due to the structured nature of the assignment, and the fact that students
had to submit their own ecological models, we can assume that the goal state of
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the users was the final state of their model. Prior to the release of the assignment,
students were made aware through a post on the discussion board that there
was a mock tutoring feature included in the system. Students were offered extra
credit if they filled out a survey and acknowledged the intent to use the mock
tutoring feature in the system whenever they needed help while modeling. Other
than the note on the discussion forum and an illustration in the survey itself,
students were not reminded of the tutoring feature or what it looked like in the
VERA interface.

4.2 Data Recording and Behavior Classification

The VERA database logs user actions with timestamps, recording a variety of
viewing, editing, and simulating behaviors that users attempt. When students
clicked on the tutoring feature, an entry was written into the user log of type
coach request.

Users actions from each cohort were extracted and organized into sessions of
work on a model. A user could have multiple concurrent sessions and a model
could appear in multiple users’ logs. Sessions are defined as consequent action
sequences with no more than a five-minute period between two actions or a ten-
minute period after a simulation. The following types of actions were recorded:
new model, construct model, revise model, start simulation, stop/reset simula-
tion, edit property, clone model, lookup, view model, coach request. New model
refers to when a student creates a new model in the VERA system. View model
refers to whenever they open a model from their project page, or refresh the
model in the browser. Construct model is written to the logs whenever a student
adds a new component or relationship. Revise model occurs whenever a student
either deletes a node or edge or changes relationship type. Edit property refers to
the students changing the parameters of either the components or relationships.
Lookup is when a student users the Encyclopedia of Life (EOL) API to fetch
real world parameters for a biotic component. Clone model is whenever a user
copies a model from another source. Start simulation occurs when a student runs
the simulation for their model and Stop/Reset Simulation occurs whenever they
click to stop or reset simulation buttons on the simulation page.

In the Markov chain diagram below, construct model, revise model, edit
property and lookup are considered “construct model”. Clone model, view model
and new model are considered “new model”. Start simulation and stop/reset
Simulation are considered “simulate”.

After constructing sessions and action sequences from the logged data,
cohorts were further divided into subgroups that focused on coach requests or
end-of-session behavior. Within these groups, sequences were analyzed using
Seq2Pat, a Sequence-to-Pattern Generation Library [24]. This specific library was
chosen for its well-documented Python library and ability to incorporate tem-
poral data of the sequence and use this as a constraint. This identified repeated
patterns of actions within a given time span across subgroups. For example, the
most common sequence among the summer 2023 cohort was [start simulation,
end simulation] which occurred in about half of nearly 2400 sequences.
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Once identified, sequences were compared across different cohorts to identify
patterns that could be used to signal a need for coaching with close attention
on actions taken before a coach request or the end of a session.

5 Results

5.1 Actions Before Coach Request

Of the 82 students in the cognitive science class that completed the assignment,
21 users made a coach request with a total of 32 requests. These 32 occur-
rences of coach requests are our proof of wheel spinning. For three of the coach
requests, the previous action before the request was also a coach request. We
are omitting these from our Seq2Pat analysis as they do not tell us about user
modeling behavior, though we investigate this pattern later in the results. The
coach requests occurred across the 2399 total sessions taken by the students in
the cognitive science class, meaning that coach requests occurred in 1.21% of all
user sessions in the course. Start simulation and stop/reset simulation are the
most common actions immediately before a coach request, and the next most
common are viewing and constructing models. Starting and stopping the simu-
lation made up 19 of the total coach requests amounting to 65.52% of the total
requests. Four coach requests, additionally, occurred right after viewing a new
model.

5.2 Sequences of Note

Seq2Pat output the following sequences of note as shown in Table 1. Sequences
are ordered on the table based on the prevalence of the coach requests for each
sequence divided by the prevalence of the sequence across all modeling sessions.
This is the last column Request/Total. This prioritized less common sequences
that have a higher number of coach requests. The Cogsci % column refers to
the prevalence of coach requests among the sequence in the cognitive science
class. The Request number refers to the raw number of coach requests following
each sequence. End % refers to the likelihood that end session would follow
the sequence for the SDLs. It is also worth noting that very few non-simulation
patterns were listed by Seq2Pat. Start simulation and stop/reset simulation were
the most common patterns before quitting actions and coach requests. From this
we can also gather that the most common action after a start or stop of the
simulation is another start or stop. As we do not want to offer assistance every
time a student stops or starts a simulation, it is important that we offer help
only after specific patterns of activities. Table 1 shows us which patterns would
be useful to offer help after, but more information, which we will examine later,
is needed to determine when in the full modeling journey to offer that help.
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Table 1. Tables showing sequences of note that had a high prevalence of coach request
to commonality of action sequence ratio and comparison to end of session ratio

Pattern Cogsci % Request # End % Request/Total

Stp Sim, Stp Sim, Strt Sim 71.38 6 90.90 1.922

Stp Sim, Strt Sim, Stp Sim, Strt Sim 67.03 4 87.50 1.921

Stp Sim, Strt Sim, Stp Sim 71.19 5 87.50 1.915

Stp Sim, Strt Sim 83.87 9 87.50 1.899

Stp Sim, Strt Sim, Strt Sim 76.46 6 90.00 1.897

Stp Sim, Strt Sim, Strt Sim 76.46 6 90.00 1.897

5.3 Total User History and Patterns Across Sessions

Table 2 demonstrates where in the modeling process the coach requests occurred.
Six of the coach requests took place on the users very first model, with two of
those requests occurring before any simulation took place. Similarly another
six coach requests occurred on the second model that the user made but only
after they had run 10+ simulations in their VERA modeling experience. The
vast majority of coach requests occurred deep into the VERA modeling process,
after students had run over 100+ simulations, and had created more than four
models.

Table 2. Coach request by model number and simulation count

Model # — Sim # 0 1–10 11–50 50–100 101–200 201+

0 2 2 2 0 0 0

1 0 0 4 1 1 0

2–3 0 1 0 0 1 0

4–5 0 0 0 0 4 3

6+ 0 0 0 0 3 4

There were patterns in the coach requests that were not picked up by Seq2Pat
because they occurred across sessions. Nine coach requests occurred within three
actions of the end of a previous session. For seven of the nine, simulation occurred
between the end-of-session and the coach request. This means that the user took
a 10+ min break from modeling, but did not close the VERA tab as to prompt
the view model action. The remaining two of the nine requests followed the
pattern of [coach request, end session, coach request]. There were additionally
two other patterns of note. First, the open model followed by requesting help,
and second, requesting help after interacting with EOL. Students requested help
after opening a new model or ending a session in 10 cases. In these cases students
did not model or start the simulation. It is important to note, however, in five
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of these cases, students began their session, clicked stop/reset simulation twice
when the simulation was not running and then requested help. The last pattern
of note is when students lookup on EOL multiple times. This only occurred once,
however this pattern is distinct from the modeling and simulating patterns we
have already discussed.

5.4 Markov Diagram

In Fig. 3, a Markov diagram helps visualize user actions as they move through
the modeling process. This allows us to examine when a student would need
assistance in their modeling journey. We can see that 15.62% of users that made
a coach request then moved directly to the end-session action. Additionally, we
see that students requested help 2.27% of the time following the construction of
a model and 2.19% of the time following simulation of a model.

Both groups, SDLs and cognitive science students, stayed in the simulation
state at similar rates with a simulation action going into another simulation
action 86.65% percent of the time with the cognitive science students and 76.24%
of the time with the SDLs. Similarly, the movement from simulation to model
construction was alike with students moving from simulation to construction
9.18% of the time for cognitive science students and 5.94% of the time for SDLs.
The end session statistics were highly different between the two groups with
simulation moving to end session only 1.88% of the time in the cognitive science
class and 14.85% of the time in the SDLs case. Lastly, cognitive science students
moved from new model to end session at a 7.14% rate while SDLs did so at a
much higher rate of 18.75%.

Fig. 3. Markov chain for students that requested coaching
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6 Discussion

6.1 When to Offer Proactive Tutoring

There is a tradeoff between the length of a sequence used as a predictor of
wheel spinning and the strength of its signal as a unique predictor. Designers of
IBL platforms such as VERA with proactive coaching will need to make context-
dependent judgments about how much to tolerate coaching that their users might
not have needed in order to increase the likelihood of providing coaching to users
that actually need it. In this context, the process of IBL in VERA contains
simulation as an evaluation step. Running the simulation multiple times presents
no cost to the user other than their own time, and this is the only part of the
process that provides feedback to the user. We can begin to understand why
so much of users’ behavior is concentrated in this stage of the process. The
feedback from the evaluation, the simulation in this case, is absolutely essential to
determining the validity of both the learner’s hypothesis and the more elaborate
conceptual model.

Looking closely into what happens after the feedback of the simulation is
shared with the user, we see some plausible hypotheses emerge about the causes
of coach requests. If the feedback is incomprehensible to the user because, for
example, the organisms completely fail or behave in a way that the user was
not expecting due to lack of ecological knowledge, then the user may struggle to
figure out how to revise their model or adjust the simulation parameters based
on the feedback. This may be a moment when they feel lost and need coaching.
As we can see in Table 2 this can occur even deep into the VERA modeling
process.

If a user starts a new model or comes back to a model after a break, which is
recorded as the end of a session, they may have some need for coaching. This is
especially true if the user stop/resets the simulation without ever starting it. So,
a user ending a session and returning may a good way to differentiate productive
persistence from wheel spinning. The correlation of wheel spinning behavior with
end-of-session behavior goes both ways. Due to the nature of wheel spinning
causing users to become help-avoidant and the fact that users often requested
help early in their model, it may be useful to offer proactive help once to users
at the beginning of their modeling process. This is further reinforced by SDLs
quitting early in their modeling process as described in Sect. 5.4.

Future work in this area could investigate different demographics and
domains to validate or broaden the current understanding of where in the IBL
process learners demonstrate the most wheel spinning. Attempting to measure
or deduce more about the users themselves and their learning behaviors and atti-
tudes may help to provide a more differentiated coaching model that is highly
responsive to individual users’ needs. The identification of patterns from this
paper, for example, help seeking during the self evaluation step of instruction
or immediately post quitting and restarting a session, might offer insight into
important times to offer proactive coaching in an IBL platform. Although this
research was designed to bridge a gap in help seeking behavior, it is still prospec-
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tive. Further research is needed to assess the outcomes of attempting to bridge
that gap. Given that learning is so contextual, researchers should be mindful of
the balance between striving to find broadly applicable results and being rigorous
about precisely naming the domain for which their results are valid.

7 Conclusion

In this work we developed a new characterization for wheel spinning that applies
to open-domain IBL platforms. Then using data from an experiment where stu-
dents were asked to flag whenever they were wheel spinning, we explored several
methods by which we can find patterns in that data. We found that students most
often requested help deep into their modeling journey, specifically during the sim-
ulation step of that modeling. We then attempted to generalize using Seq2Pat
to determine when to offer help, identifying common patterns and comparing
them to end of session behaviors for self-directed learners. We also identified a
couple of common patterns in requesting help, for example students beginning
a new model, or students stopping a simulation without starting a new one.
We believe this research promises to be a useful preliminary step in identifying
wheel spinning in open-domain interactive learning environments: it could be a
foundation for an inquiry-based learning platforms that is capable of providing
proactive assistance to students who may be wheel spinning. This will support
more students in finding success in the increasingly complex and open-ended
problems they are solving in academic and professional environments.
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sequence-to-pattern generation for constraint-based sequential pattern mining.
Proc. AAAI Conf. Artif. Intell. 36(11), 12665–12671 (2022)

https://doi.org/10.1007/978-3-642-39112-5_44
https://doi.org/10.1007/978-3-642-39112-5_44
http://arxiv.org/abs/1909.06856
http://arxiv.org/abs/1708.04164
http://arxiv.org/abs/1708.02361


A Constructivist Framing of Wheel Spinning 187

25. White, B.Y., Frederiksen, J.R.: Causal model progressions as a foundation for
intelligent learning environments. Artif. Intell. 42(1), 99–157 (1990)

26. Wu, Z., et al.: Predicting challenge outcomes for students in a digital game for
learning genetics. In: EDM Workshops, pp. 51–59 (2019)

27. Zhang, C., et al.: Early detection of wheel spinning: comparison across tutors,
models, features, and operationalizations. International Educational Data Mining
Society (2019)



Evaluating the Ability of Large Language
Models to Generate Motivational

Feedback

Angelo Gaeta , Francesco Orciuoli(B) , Antonella Pascuzzo ,
and Angela Peduto

Dipartimento di Scienze Aziendali - Management and Innovation Systems
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Abstract. The paper describes and evaluates the use of large language
models (LLMs) to provide personalized motivational feedback in the con-
text of Intelligent Tutoring Systems (ITS). Specifically, the main contri-
butions of the present work are the definition of a novel evaluation frame-
work and the early application of such a framework to assess the ability
of LLMs to generate textual feedback including motivational features.
The experimentation results show that LLMs demonstrate a promising
ability to generate motivational feedback and, therefore, a good chance
to be integrated as an additional model into the traditional ITS archi-
tecture.

Keywords: Large Language Model · Intelligent Tutoring Systems ·
Motivational feedback

1 Introduction

Motivating students is essential to their success in academic performance and
daily life activities. However, the development of online motivational systems
requires knowledge about the strengths and weaknesses of students, including
their learning approach, background, and online experience. In [17], motivation
is defined as the desire and the willingness of students to engage and persist in
learning tasks. Personalizing the learning experiences, identifying areas requir-
ing feedback or scaffolding, and offering individualized support, are some of the
external factors [23] that significantly impact students’ motivation. On the other
hand, also the intrinsic factors such as students’ judgments of their ability to
complete a task, and their perception of the benefits that task completion will
bring, have an influence. Therefore, leveraging extrinsic and intrinsic motiva-
tional factors results in enhancement in learning engagement. In this scenario,
the introduction of Intelligent Tutoring Systems (ITSs) [5,14] marks a signifi-
cant turning point in the use of Artificial Intelligence (AI) in the education field.
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In fact, by collecting and storing data on performances and other variables,
they can make inferences about students, providing them tailored feedback and
hints [18]. These educational systems consist of interconnected components: i)
the Domain (or Expert) module, which encompasses domain-specific facts and
rules, and holds the instructional contents; ii) the Student (or Learner) mod-
ule, in which student profiles including problem-solving states and long-term
progress are stored; iii) the Tutoring (or Instructional) model, which dictates
how the tutor (system) teaches, guides the student, and offers feedback; iv) the
User Interface, which deals with how learners interact with the ITS [15]. Recent
advancements in Generative AI, particularly with the development of large lan-
guage models (LLMs) leveraging Pre-trained Transformers, have significantly
contributed to the field of Natural Language Processing (NLP) [11,21]. Inte-
grating these modules with real-time student-tutor conversations, highly sophis-
ticated texts that closely resemble those authored by humans [20] are provided
to students. A list of teaching resources is no longer just presented to students.
Instead, ITSs create activities that allow students to analyze a task from various
perspectives, aligned with their existing knowledge and learning styles, and to
utilize the provided resources effectively [9]. The results presented in this paper
aim to evaluate the use of LLMs to generate motivational text in the context
of ITSs. The experimentation involved different LLMs such as GPT-3.5-Turbo,
Gemini 1.0 Pro (Gemini), Llama 2 70B, and Mixtral 8× 7B, to identify the
best-performing model. In the Evaluation Framework, the identification of moti-
vational pillars, the construction of learning situations, prompt engineering, and
the setting of qualitative and quantitative analyses are specified. Results from
both qualitative and quantitative experiments indicate that the different mod-
els can generate motivational texts appropriate for different learning situations.
The structure of the remaining part of the paper is as follows: Sect. 2 presents
and discusses related works. Section 3 shows, from the conceptual architecture
perspective, how an LLM could interact with the main models that are typi-
cally included within an ITS. Section 4 describes the novel evaluation framework.
Section 5 reports and discusses the experimental results obtained by applying the
defined framework. Lastly, Sect. 6 draws conclusions and presents possible future
works.

2 Related Work

Generative AI represents an innovative and promising approach to meeting the
needs of modern education. In fact, by harnessing the power of Generative AI
in LLMs such as ChatGPT, it is possible to make them perform extraordinar-
ily complex tasks in the field of education [2]. For instance, promoting teaching
and learning, and Virtual Tutoring [6] are complex tasks that can be supported
by LLMs. By leveraging interaction and human-like understanding capabilities,
these models can assist students efficiently through real-time interactions. There-
fore, acting like ITSs, LLMs know perfectly what to teach, who to teach, and
how to teach. As a consequence, enhancements in the learning experience [7] are
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reachable. In [25], students of a foreign language are supported and guided in
studying the vocabulary usually housed in foreign language textbooks. Combin-
ing the dialogue generation technology with GPT, relevant questions are asked
and the answers are evaluated. Moreover, these models help students learn and
adopt a growth mindset [13]. Persuasive strategies are used to give students feed-
back to foster the growth mindset and, at the same time, they are motivated to
actively participate in the learning environment. Realizing the potential of act-
ing as tutors, in the present work, the LLMs are integrating into the traditional
ITS architecture to evaluate their abilities in generating motivational responses
appropriate to specific students’ learning situations.

3 Overall Picture

This work starts from the hypothesis that a traditional ITS architecture could
be enhanced through the integration of an LLM, pre-trained for executing text
generation tasks. A traditional ITS architecture should have an interface to com-
municate with students and three components, domain, tutoring, and student,
each having its own category of knowledge. The aforementioned knowledge com-
ponents respectively deal with: i) what should be learned by the user, ii) the
progress of the user, and iii) the behavior of different teaching situations [8].

Fig. 1. Extended architecture for ITS

Starting from this picture, the main idea is to consider the chance to add a
further model (the LLM) to support the generation of textual content aimed at
enriching and improving the communication of tutoring actions. One of the main
benefits of such an integration could be improving the level of sustainability of
intelligent tutoring systems development. In fact, enhancing an ITS with LLMs
could lead to decreased efforts related to authoring phases, whose complexity
and expensiveness are two of the major barriers to the diffusion of intelligent
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tutoring systems. Let us see how a LLM could be integrated into a traditional
ITS architecture (see Fig. 1). The tutoring component controls the interactions
with the LLM, thus it is responsible for invoking the language model, bypass-
ing all necessary input, and pushing its answers into the interface in order to
communicate them to the student. Among the other plausible functionalities,
the paper assesses how LLMs can help generate appropriate motivational feed-
back in intelligent tutoring systems, thus providing initial support for the initial
hypothesis.

4 Evaluation Framework

The main goal of the proposed framework is to assess the ability of LLMs to
generate textual content to propose as motivational feedback sent by intelligent
tutors to students.

4.1 Component View

The proposed framework is structurally defined by seven main components: i)
Pillars, ii) Personas and Scenarios Definition, iii) Ground Truth Preparation,
iv) Prompt Engineering, v) Human Tutors, vi) Qualitative Evaluation, and vii)
Quantitative Evaluation.

– Pillars [3] are criteria characterizing the strategies that can be used to create
motivational textual content to empower tutors’ feedback. In this framework,
pillars are used as the main source to generate ground truth and prompts for
invoking LLMs. In particular, the identified pillars are six: establishing task
value, promoting mastery goals, fostering belongingness, encouraging emo-
tional regulation, promoting expectancy of success, and fostering autonomy
(see Table 1).

– Personas and Scenarios [1], in the context of this work, are respectively a
description of a target student and brief stories describing the interactions of
the considered personas with the learning environment. Typically, a persona is
combined with one or more scenarios. In this framework, the combination of a
persona with a specific scenario is used to instruct prompt engineering to allow
LLMs to understand the learning situation and generate suitable motivational
texts. It is important to note that in the context of real-world situations,
it is possible to extract information related to a pair <persona, scenario>
the Student Model and the other main models included in a traditional ITS
architecture.

– Ground Truth Preparation is the component responsible for generating
the dataset that will be used to support the quantitative evaluation of LLM
results.

– Human Tutors are expert tutors who have two main responsibilities: super-
vising the ground truth preparation by also considering personas and scenar-
ios, and evaluating LLMs results during qualitative evaluation.
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– Prompt Engineering is the process of crafting instructions for LLMs to
enhance the effectiveness and quality of their outputs [22]. It is the phase
in which prompts, i.e. input texts for LLMs, are prepared by using specific
approaches and taking into account personas, scenarios, and pillars.

– Quantitative Evaluation compares ground truth with motivational texts
generated by LLMs. Such comparisons are executed by considering the same
learning situations.

– Qualitative Evaluation foresees the generation of motivational texts
through the invocation of LLMs, which suitable prompts are passed to, and
the assessment of their answers by engaging a pool of human tutors.

Table 1. The definition of the six motivational pillars

Pillar Definition

Task value Students’ perceptions of how important, interesting, and

useful a particular task is

Mastery Goals Ambition to improve the level of competence, to develop new

skills, or to achieve a sense of mastery based on self-referenced

(intrapersonal) standards

Sense of Belonging Feeling accepted and liked by the rest of the group. Be

connected to others and feeling like a member of a community

Manage of emotions Ability to correctly identify one’s own emotions and those of

others, and to guide, adjust, and control them purposefully, to

achieve healthy development

Expectation of success The degree to which students believe they will accomplish a

task or master a skill successfully

Autonomy Take control and responsibility for their learning, both in

terms of what they learn and how they learn it. The starting

point is that students can self-direction and develop an

independent, proactive approach to their studies

4.2 Quantitative Evaluation

The process for applying quantitative evaluation is described in Fig. 2 which
shows the creation of a ground truth that is a dataset including actual motiva-
tional texts. Each row contains three versions of the same actual motivational
text to provide LLMs with more chances to generate a matching response. In
particular, three uncontextualized motivational texts are provided for each pil-
lar. Such texts are obtained from specialized literature and supervised by expert
human tutors who also contextualize them by using a set of k pairs <persona,
scenario>. For the construction of model-generated texts, three main activities
are executed. The first one is Prompt Engineering which produces six prompts
(one for each pillar) for each one of the k pairs <persona, scenario> that are
aligned with the ones used for the ground truth. Prompts are constructed by
exploiting the following techniques:

– Output customization, to assign the role of a motivating tutor to the
model;
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Fig. 2. Quantitative evaluation pipeline

– Context control [22], to specify the definition of one or more pillars used
in order to activate the use of motivational strategies in the model;

– Personalized prompts [4] to provide information related to the student’s
profile and the learning context to the model.

These techniques are employed during the construction process described in
Fig. 3. The process, essentially, contextualizes a prompt template by using a
specific pair <persona, scenario> and a number of pillars definition. In partic-
ular, quantitative evaluation injects only one pillar at a time, while qualitative
evaluation puts all six pillars in the same prompt. Subsequently, the prompt is
built by composing five fragments. The first one is used to inform the LLM of
its role (tutor) and the context (course, class, and faculty name) in which it
acts. The second fragment provides the LLM with the information about the
student. The third fragment provides the LLM with information about the his-
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tory of interactions between the student and the learning environment and, in
particular, about the last learning activity accomplished by him/her (name, diffi-
culty level, obtained score). The fourth fragment is the task that the LLM must
execute. Lastly, the fifth fragment contains additional knowledge transmitted
to the LLM and related to the pillars it should consider in its response. The
generated prompts are used to invoke a set of different LLMs (Invoking LLM
activity). Each LLM answers to these invocations and generates motivational
texts that are compared (in the Evaluating model-generated texts activity) with
actual texts in the ground truth by using a set of metrics. Note that each model-
generated text is compared to all three versions of the corresponding (same pillar
and same pair <persona, scenario>) actual text. Thus, the best result among
the three is considered. The adopted metrics are BERTScore1 and ROUGE2.
BERTScore returns three values, Precision, Recall, and F1-score. Precision indi-
cates the fraction of model-generated text that is correct with respect to the
actual text. Recall indicates the fraction of the actual text that is covered by the
model-generated text. F1-score is the harmonic mean of Precision and Recall,
thus it can be considered as an aggregate result. In this framework, only Preci-
sion and F1-score are employed. In particular, the average F1-score is calculated
to evaluate how well the model can generate responses closely matching those
of a human tutor. Furthermore, ROUGE is used to check whether the vocab-
ulary used in the model-generated text mirrors the one used by human tutors,
computing the total number of overlapping units in terms of uni-grams.

Fig. 3. Prompt construction

1 https://huggingface.co/spaces/evaluate-metric/bertscore.
2 https://pypi.org/project/rouge-score/.

https://huggingface.co/spaces/evaluate-metric/bertscore
https://pypi.org/project/rouge-score/
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4.3 Qualitative Evaluation

Fig. 4. Qualitative evaluation pipeline

The process for applying qualitative evaluation is described in Fig. 4. For the
construction of model-generated texts, three main activities are also executed.
The first is Prompt Engineering which produces one prompt for each one of
the k pairs <persona, scenario>. As well as quantitative evaluation, the same
prompt engineering techniques (discussed in Sect. 4.2) and construction process
(depicted in Fig. 3) are adopted also in the qualitative evaluation. However, in
this case, the fifth fragment of the prompt template (see Fig. 3) simultaneously
considers all the six pillar definitions. Then, the generated prompts are used to
invoke a set of different LLMs (Invoking LLM activity). LLMs answer to these
invocations and generate motivational texts that are provided to human tutors
who can evaluate (in the Evaluating model-generated texts activity) them by
also considering, from time to time, the pair <persona, scenario> which the
LLM response comes from. Human tutors’ evaluations are provided by means of
a questionnaire adopting the following evaluation criteria:

– Consistency to measure how well the responses stay on topic and align
with the learning situation [16]. This characteristic allows us to assess the
capability of LLMs to provide personalized feedback, similar to a human
tutor [12]. For such a criterion, 1 means completely disconnected from the
provided pair <persona, scenario>, while 5 means perfectly consistent.
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– Motivation to assess whether the six pillars of motivation are clearly and
effectively present in the generated text. For this criterion, 1 means includes
no motivational pillar, while 5 means includes all six motivational pillars.

– Readability to measure the clarity and fluency of the text to ensure that
feedback is easily understood by the students [10,19]. For this criterion, 1
means the text is difficult to read, while 5 means fluent and flowing text.

– Correctness to cover factual accuracy, adherence to common sense, logical
flow, and proper grammar. For students to receive valid guidance, tutors
must consistently provide appropriate and accurately written responses [24].
For Correctness, 1 means the text lacks logic and contains errors, while 5
means well-organized and logical text with no errors.

– Overall quality that considers every element of the prompt and the gen-
eral effectiveness of the motivational generated text. For such a criterion, 1
means confusing, disorganized, and lacking meaningful guidance or encour-
agement, while 5 means highly coherent, engaging, and exceptionally effective
in motivating the learner.

Each criterion is evaluated with a score from 1 to 5.

5 Experimentation Activities and Results

5.1 Settings and Execution

The selection of the LLMs to be compared was made by considering a mix of
open-source and proprietary models, different model sizes in terms of the number
of parameters, and different maturity levels. At the end of the selection process,
the following models were chosen:

– ChatGPT-3.5-Turbo3 (OpenAI), 175 billion parameters;
– Gemini 1.0 Pro4 (Google), 3.25 billion parameters;
– Llama 2 70B5 (Meta), 70 billion parameters;
– Mixtral-8× 7B6 (Salesforce), 46.7 billion parameters.

The experimentation activities were executed by using Python and Jupyter7.
Moreover, some external libraries were used: BERTScore, ROUGE, and NLTK8.
The parameter k used in Sects. 4.2 and 4.3 is set to 3, i.e., three specific pairs
<persona, scenario> are adopted in the evaluation processes. The role of human
tutor for quantitative evaluation and qualitative evaluation was played by six
(three for quantitative and three for qualitative) Computer Science teachers
from the Dipartimento di Scienze Aziendali - Management & Innovation Systems
(DISA-MIS) - Università degli Studi di Salerno.
3 https://openai.com/.
4 https://gemini.google.com/app.
5 https://www.llama2.ai/.
6 https://mistral-7b.com/mixtral-8x7b-online/.
7 https://jupyter.org/.
8 https://pypi.org/project/nltk/.

https://openai.com/
https://gemini.google.com/app
https://www.llama2.ai/
https://mistral-7b.com/mixtral-8x7b-online/
https://jupyter.org/
https://pypi.org/project/nltk/
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5.2 Results

The analysis of the results obtained revolves around how pillars (activated via
prompts) were used by the models. The first interesting result is shown in Fig. 5
where the distribution of F1-scores across the different LLMs shows specific
pillars preferred by some models and other pillars preferred by other models.

Fig. 5. Quantitative BERT results (F1-scores)

In particular, Task Value and Expectation of Success emerge as the most
considered pillars by Llama 2 70B and Gemini. While Sense of Belonging and
Autonomy pillars are considered especially by Gemini. Moreover, Mixtral-8× 7B
always offers the lowest values of F1-score, except for Autonomy and Task Value
where its performance is slightly better than ChatGPT-3.5-Turbo. Llama 2 70B
shows its ability to use all the considered motivational pillars. Gemini prefers to
use Sense of Belonging and Autonomy. ChatGPT-3.5-Turbo prefers Expectation
of Success. Lastly, Mixtral-8× 7B shows evident difficulties in exploiting pillars.
This is especially true for the Management of Emotions pillar. In summary,
Llama 2 70B is the model that stands out for its superior ability to gener-
ate motivational responses by considering all pillars. Furthermore, Fig. 6 shows
the degrees of similarity between actual texts and model-generated texts at the
vocabulary level, i.e., the number of uni-grams in common between actual and
model-generated text was measured. These results are important for assessing
the lexical similarity between model-generated texts and motivational texts pro-
vided by human tutors, both expressed in the same situation (same person and
same scenario). In particular, Llama 2 70B offers the best results with respect
to the Expectation of Success pillar, while Gemini is the best model in using
Sense of Belonging. Mixtral-8× 7B shows always poor results, with respect to
other models, except for the pillar Task value in which it reaches the highest
value. After considering quantitative evaluation, it is important to enrich the
previously reported results also by considering qualitative evaluation.
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Fig. 6. Quantitative ROUGE results

Such a further phase reveals (see Fig. 7) that model-generated texts are
lengthy but clear even if readability and fluency could be improved. With respect
to these results, it is important to remember that used models are pre-trained
without any training for specific domains. Thus, their performance is likely to
be enhanced by executing fine-tuning.

Fig. 7. Qualitative results

Human tutors’ evaluations (Fig. 8 shows a sample feedback analysis) point
out how pillars are used in providing motivational responses. In particular, Man-
agement of Emotions is not always included in LLMs’ responses.
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Fig. 8. Sample feedback analysis

A very interesting aspect to consider is related to the ability of all LLMs
to adapt to different learning situations (determined by the pairs <persona,
scenario>. Lastly, if considering both quantitative and qualitative evaluations,
it is clear the supremacy of Llama 2 70B. The second best model is Gemini
followed by ChatGPT 3.5 Turbo and Mixtral-8× 7B.

6 Conclusions and Future Works

This work aimed at investigating the effectiveness of LLMs when generating per-
sonalized motivational feedback in the context of Intelligent Tutoring Systems.
A novel evaluation framework is defined and instantiated for accomplishing early
experimentation and evaluation activities. The achieved results, in general, show
that the considered LLMs are able to create motivational text to be included
in tutors’ feedback. Such results show also that Llama 2 70B and Gemini are
the best-performing models with respect to the evaluated task. In particular, if
considering Llama 2 70B, it is confirmed that such a model performs well on
text generation and human-like conversation tasks. In contrast, ChatGPT-3.5-
Turbo and Mixtral-8× 7B were found to be less effective overall. With respect to
specific pillars, that represent the motivational strategies adopted, both quanti-
tative and qualitative evaluations reveal that the models exploit several pillars
when generating motivational textual content, albeit in varying degrees. Notably,
some pillars are used in the same way human tutors do. Other pillars, instead,
while used correctly are declined differently by LLMs than by human tutors,
hence such pillars are not directly recognized by quantitative evaluation but
only by qualitative one when the different way to decline them is understood
by expert tutors. Among all pillars, Task Value is the most frequently utilized
by the models. A very interesting aspect to consider is related to the ability
of all LLMs to adapt to different learning situations (determined by the pairs
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<persona, scenario>). Encouraged by these promising results, the authors are
planning future works to concretely integrate an LLM into an ITS architecture
and conduct experimentation activities where students’ motivation is measured
after the fruition of motivational feedback artificially generated by the LLM.
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Abstract. Most aviation assistance systems do not take into account
the pilot’s actual cognitive state when providing assistance. Yet, espe-
cially in critical situations such as aircraft takeoff, it is important to
determine whether the information presented has been correctly pro-
cessed and understood by the pilot, or whether some has been omitted
or misinterpreted. This paper presents a cognitive synthetic pilot based
on the ACT-R cognitive architecture and integrating a reference ontology
of standard piloting procedures as a knowledge base. The main purpose
is to serve as a coaching system for training pilots in simulation environ-
ments to perform critical piloting tasks such as takeoff, by exploiting the
advantages of a rich semantic representation of the aeronautical context.
In this way, the ontology formally models the expert piloting procedures
that will be used by the synthetic pilot to advise an trainee pilots during
training sessions. For this, we use two types of ontologies to model the
pilot’s work: a task ontology describing all the actions the pilot must
perform, and a domain ontology containing knowledge about the execu-
tion environment. The synthetic pilot uses semantic rules and a reasoner
for task automation. The rules define when a task can be executed. The
reasoner analyzes these rules and the context to decide which actions to
execute. Over time, the actions to be executed are presented in the form
of a complex dynamic 3D graph, thus allowing better visualization of
the tasks to be performed and intelligent automation of the flight proce-
dures described in the ontological reference model to assist the pilot. This
work is an intermediate step towards the implementation of a complete
cognitive assistance for novice pilots in a simulation environment. The
ultimate goal is to extend the capabilities of the synthetic pilot through
machine learning, by analyzing real flight data to extract typical pilot
behavioral profiles.
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1 Introduction

In daily life, the suggestions of our peers significantly influence many of our deci-
sions, whether it’s choosing a scientific journal, a candidate for recruitment or a
movie [11,12]. Moreover, with the rise of online platforms and their recommen-
dation algorithms, the impact of peer reviews now extends beyond one’s close
social circle. Technologies enable us to receive personalized proposals based on
the analysis of our past preferences and those of a large panel of users with sim-
ilar tastes. Thus, the tendency to rely on the advice and recommendations from
others, whether from those around us or from automated systems, is increasingly
shaping our choices in various domains. This tendency to rely on recommenda-
tions and feedback is also present in more technical fields like flight training,
where new pilots rely on the advice and debriefings of their instructors, who act
as guides and experienced peers [4]. Additionally, to enhance the relevance of
suggestions to users, recommendation algorithms increasingly incorporate con-
textual information about the user’s situation. These contextual data, aiding in
refining recommendations, can either be provided directly by the user or collected
automatically by sensors and other devices capable of determining the user’s cur-
rent situation [1]. Despite the availability of automated systems dedicated to pilot
training, pilots often face issues of inattention, leading to decreased performance
during flights. The causes of this inattention can be diverse, depending on factors
such as perception, attention and emotion problems [8]. Due to this decreased
attention in the cockpit, it becomes crucial to provide cognitive assistance to
pilots [23]. This paper presents a proposal for a cognitive synthetic pilot acting
as a coach. It is based on the ACT-R (Adaptive Control of Thought-Rational)
cognitive architecture and integrates an ontology defining standard piloting pro-
cedures as a knowledge base. The aim is to provide recommendations to novice
pilots during simulator training.

The ontological reference model used is described in [6]. It consists of pro-
duction rules closely linked to the execution context, providing a framework
for automatic problem solving. This means that normal and abnormal proce-
dures are decomposed into production rules to identify the actions expected of
the pilot in each situation. This automatic resolution is achieved by integrating
environmental parameters into the reference framework. The reference model is
structured into domain and task ontologies. The domain ontology groups the
terminology related to the execution environment, mainly aiming to facilitate
execution in a complex context. The task ontology provides a taxonomy of aero-
nautical procedures specific to the aircraft piloting domain.

Based on Newell’s criteria [14] and Sun’s desiderata [19], we have opted for
the ACT-R cognitive architecture. The principles described by these criteria
and desiderata provide guidelines for evaluating and designing relevant, credible
and robust cognitive models. ACT-R is used to develop cognitive models that
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simulate the functioning of the human brain in various tasks, from problem-
solving to learning and decision-making [2]. These models help better understand
the underlying mechanisms of cognitive processes and predict human behavior
in specific contexts such as aircraft piloting [9]. ACT-R is a production system
composed of a declarative memory as well as a procedural memory. The former
contains knowledge, while the latter contains production rules. The declarative
module deals with recognizing what is presented to the model and calculating
rule activation, while the procedural part deals with calculating the utility of
each activated rule and triggering the most appropriate one. Cognition emerges
from the interaction between procedural and declarative structures [3].

Finally, the paper outlines the methodology used to build the synthetic pilot,
highlighting the integration of the ontological reference model and the produc-
tion rules. Thus, in order to ensure the proper functioning of our synthetic pilot,
we decided to store the domain ontology and task ontology in its declarative
memory. As for the rules used to make inferences about knowledge, such as pro-
duction rules and SWRL (Semantic Web Rule Language) rules, we have stored
them in the procedural memory of our ACT-R cognitive agent. This structur-
ing allows him to have the information he needs to reason and make decisions
autonomously in his environment. The decisions made by the cognitive agent
are modeled by a 3D directed graph. This graph is dynamically generated over
time and displayed in the visual terminal, allowing the synthetic pilot to identify
the next task to be performed and provide a visual explanation of the proposed
recommendation in the form of a path through the directed graph. To build this
directed graph dynamically, the cognitive agent must always know the final goal
to be achieved and the current task. The built cognitive pilot is able to detect
deviations from standard procedures and provide contextual assistance to the
novice pilots in the form of alerts, comments and recommendations.

The results obtained show that cognitive coaching based on the ontologi-
cal reference model can improve the learning of procedures and accelerate the
acquisition of automatisms in novice pilots, compared with unassisted training.

This research opens up new perspectives in designing expert training systems
in virtual environments where, in addition to the expert knowledge provided by
the ontology, machine learning can be used to increase the cognitive agent’s
knowledge by learning pilots’ behavioral profiles from real flight data.

2 Related Work

Several works, such as the ontological representation of knowledge in the aircraft
field, the automatic execution of ontological piloting procedures, the automatic
flight deviation detection, as well as the execution of a piloting task by an ACT-
R agent, have laid the foundations for the development of our cognitive synthetic
pilot.
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2.1 The Reference Model

In order to formally represent the knowledge related to the task, the task envi-
ronment, and pilot cognitive processes, ontologies can be used. Mizoguchi and
Bourdeau [13] have shown the benefits of using an ontological structure to repre-
sent rules in order to formally model the knowledge of a domain. In the aeronau-
tical field, ontologies have been developed to formalize knowledge representation.
Among these, notable research has been conducted by Aghdam and his team [22],
Stefanidis and colleagues [18], as well as Sheng and collaborators [17]. Although
these works have contributed to formalizing knowledge, none of them has actively
exploited expert domain knowledge, formalized through an ontology, with the
aim of directly assisting pilots and providing them with immediate feedback on
task execution. The ontological reference model proposed in [6], addresses the
challenge of integrating pilots’ expertise into an ontology to actively support the
execution of flight tasks.

The ontological reference model formalizes expert knowledge of piloting pro-
cedures using two linked ontologies developed in OWL (Web Ontology Lan-
guage): a task ontology that captures in a structured way the sequential, tem-
poral and contextual representation of procedures acquired from expert pilots,
and a domain ontology that describes the cockpit environment. This two-step
process based on standard formalisms allows for the formal and detailed mod-
eling of these complex procedural knowledge for automated exploitation by a
cognitive agent (Fig. 1).

Fig. 1. Ontological reference Model.
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2.2 Automatic Execution of Reference Model

Except for the approach proposed in [7], there is no documented solution in the
literature for automating the execution of the ontological reference model. The
authors of this paper have proposed a framework for the automatic interpretation
and execution of the production rules contained in the reference model. This exe-
cution framework uses the procedural and declarative knowledge available in the
model. The interpreter uses semantic rules to evaluate environmental constraints,
task preconditions and task execution, enabling automatic execution. The sim-
ulator used includes a reasoner that manipulates knowledge, evaluates the task
and aircraft environment, and autonomously executes required tasks. To support
the execution model, the reasoner uses the Semantic Web Rule Language. The
set of rules thereby makes the reference model automatically executable.

2.3 Automatic Flight Deviation Detection

Pietracupa and colleagues focused on the automatic detection of flight deviations
using the ontological reference model for piloting procedures [15].

This paper presents an innovative system, aimed at detecting in real time
deviations in the actions performed in the cockpit from the reference procedures
established in the reference ontology for pilot procedures. The aim is to antici-
pate and prevent potential errors that may occur when processing complex data
in very short periods, typical of aircraft piloting. To assess these deviations, the
authors have developed a model that uses the Needleman-Wunsch global align-
ment algorithm to compare pilots’ actions with reference sequences defined in
the ontology. They also integrated a Siamese LSTM network, a type of recur-
rent neural network, to understand the relationships between different action
sequences. This approach facilitated the detection of errors such as added, omit-
ted, or incorrectly ordered actions. This system is limited to detecting deviations
from aviation experts’ prescriptions, without cognitive modeling or recommen-
dation formulation.

2.4 Execution of a Piloting Task by an ACT-R Agent

Other than the research published in [20], we have not found any documentation
in the literature dealing with the integration of the ontological reference model
of piloting procedures with an ACT-R cognitive agent.

The paper presents a cognitive agent based on the ACT-R cognitive archi-
tecture, which integrates an ontological reference model of the aircraft domain
to simulate complex piloting tasks. This reference model is part of the ACT-R
agent’s declarative memory, while the production rules used to extract knowledge
are stored in its procedural memory.
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The study also introduces an algorithm detailing how the cognitive agent
executes a task. Finally, the paper describes the methodology used for imple-
mentation, using the pyactr library for the ACT-R model and owlready2 for
ontology-oriented programming.

Experimental results demonstrate the successful execution of a piloting task
by the cognitive agent, similar to the cognitive cycle observed in human pilots.

3 The Cognitive Synthetic Pilot

The cognitive synthetic pilot presented here is based on the ACT-R cognitive
architecture and integrates the ontological reference model into its declarative
memory. The choice of ACT-R was guided by Newell’s criteria and Sun’s desider-
ata, which establish various capabilities, properties and evaluation criteria for
cognitive architectures [9]. Cognitive architectures are a significant research topic
in cognitive psychology, philosophy of mind, artificial intelligence, and cognitive
sciences. The ACT family of architectures was developed by John Robert Ander-
son in 1973 with the aim of providing a comprehensive theory of human cogni-
tion [2]. Kotseruba and Tsotsos [9] define a cognitive architecture as the compo-
sition of computer tools aimed at generating perception, reflection, and decision-
making capacities similar to those of a human being. The ultimate goal of cog-
nitive architectures is to revive the dream of strong artificial intelligence [10,16].
ACT-R (Adaptive Control of Thought - Rational) [2] is a cognitive architecture
that aims to simulate and understand human cognition through a set of modules
representing different cognitive processes. ACT-R’s main modules are :

– Perceptual modules, receiving sensory information;
– Motor module, controlling motor actions;
– Declarative module, storing factual knowledge in long-term memory;
– Procedural module, containing production rules for action selection;
– Coordination module, selecting production rules and modules to be activated.

Cognitive functioning in ACT-R is based on chunks of information that
circulate between modules according to a cognitive cycle: perception, memory
retrieval, motor action. Our synthetic pilot, based on the ACT-R model, operate
as follows:

– The declarative module contains knowledge provided by the reference model.
It includes the domain ontology and task ontology (Retrieval Buffer). It also
stores information about the current task state (Imaginal Buffer) and the goal
to be achieved (Goal Buffer) ;
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– The procedural memory models productions (condition-action-states) based
on the current state of the piloting task or the aircraft environment. It also
contains SWRL rules to automate task execution and determine their execu-
tion status;

– Perceptual modules (Visual Buffer) and motor modules (Manual Buffer)
model basic sensory processes and interact with the environment.

Based on information captured in the environment, the coordination module
or pattern matcher queries the reference model to deduce whether there is a
deviation or not. In the case of a deviation, it proposes actions to manage it.

To successfully complete its mission, the synthetic pilot remains flexible and
adaptive during task execution. It also knows the operational context of the
ongoing task and related tasks. It also understands what constitutes normative
performance for a task and the means to achieve the desired goal. The operating
architecture of our synthetic pilot is shown in Fig. 2.

Fig. 2. Synthetic pilot internal architecture.



Towards Cognitive Coaching in Aircraft Piloting Tasks 209

4 Methodology and Results

4.1 Methodology

To build the synthetic cognitive pilot, we relied on the following tools:

– The Pyactr Python library, which allowed us to create our cognitive agent
based on the ACT-R cognitive architecture. Pyactr provides tools to define
cognitive models, specify production rules, and simulate cognitive processes
such as perception, memory and action;

– The owlready2 Python library, which enabled us to manipulate the ontological
reference model (domain and task ontologies). Owlready2 allows representing
an ontology, accessing and modifying its classes and properties;

– The Pellet reasoning engine, which facilitated logical deductions on the
domain and task ontologies;

– The Semantic Web Rule Language (SWRL), which enabled us to write logi-
cal rules to infer task execution status from information extracted from the
ontological reference model;

– The NetworkX library enabled representing the network of tasks as a graph
with nodes and edges. We could then use NetworkX functions to generate and
update the cognitive agent’s path through this task network graph over time.
The library provided the necessary capabilities to construct, navigate, and
analyze the agent’s trajectory in the complex, evolving task network. Over-
all, NetworkX facilitated modeling and tracking the cognitive agent’s dynamic
pathway within the complex network of tasks. The Pyvis library enabled inter-
active and dynamic network visualization of the complex graphs created with
NetworkX. We could leverage Pyvis to generate web-based visualizations of
the node-edge graphs and interact with the network by zooming, dragging,
and hovering over elements. This interactivity facilitated analysis and inter-
pretation of the complex networks. Subsequently, Matplotlib empowered 3D
visualization of the network graphs, enhancing our ability to understand and
present the high-dimensional graph structures. The 3D plots provided more
visually intuitive representations of the networks compared to 2D plots. Over-
all, Pyvis and Matplotlib complemented NetworkX to enable both interactive
exploration and 3D visualization of the complex task networks;

– The Protégé Ontology Editor, with its user-friendly graphical interface for
manipulating reference model elements (classes, properties, individuals, etc.);

– The Unified Modeling Language (UML), used to visually represent the con-
cepts and relationships in the reference model.

The sequence diagram in Fig. 3 models, in a temporal order, the interactions
within the cognitive agent during the execution of a task.

Algorithm 1 shows how the synthetic pilot performs the takeoff procedure
described in the ontological reference model.
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Fig. 3. Sequence diagram of the execution of a task by the synthetic cognitive pilot.
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To make the reference model directly executable, we have defined several
SWRL rules. Two examples of which are presented in Fig. 4. The first rule (Fig. 4.
a) is designed to validate tasks with an action and a precondition (for example:
task 1001). The second rule (Fig. 4. b) is intended to validate tasks with a con-
straint of type 1 and another of type 5 (for example: task 1019).

Fig. 4. Example of two SWRL constraint evaluation rules.

4.2 Results

To assess our model, we conducted several simulations. Initially, we performed
complete takeoff procedures. Subsequently, we tested the synthetic pilot by hav-
ing it perform takeoff recoveries at randomly chosen moments in the takeoff
procedure. In each case, we dynamically generated the directed task graph and
compared it to the execution expected by the ontological reference model.
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Fig. 5. Reference state-transition diagram and directed task graph for the takeoff pro-
cedure.

During the complete procedure, the graph (Fig. 5. b) generates tasks identical
to those planned by the experts (Fig. 5. a). Based on this graph, the cognitive
agent executes the tasks appropriately.

Regarding takeoff recovery procedure, two cases can occur:

– In the first situation, the generated directed task graph (see from task 1024
in the Fig. 6. d) is easy to navigate, and the results provided by the cognitive
agent conform to the reference (Fig. 6. a, Fig. 6. b, Fig. 6.c);

– In the second situation, the cognitive agent may find itself in a deadlock (tasks
1025 and 1026), meaning a situation where the ontology has not provided any
solution (Fig. 6. a, Fig. 6. b, and Fig. 6. c). To exit this deadlock, we search
the ontology for a neighboring task leading to a solution and generate a link
to that task (Fig. 6. d). If this is not possible, we end up with a crash. Adding
new links allows the agent to complete its task.
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Fig. 6. Takeoff recovery : tasks involved from the reference model and directed task
graph with added new links.

The agent can function in two modes (Fig. 7): an autonomous mode and
an interactive mode. In autonomous mode, it performs the procedure alone,
presenting its results on the terminal (Fig. 7. b). In interactive mode, it operates
interactively, makes recommendations to avoid deviations (Fig. 7.a), acting as a
coach assisting the pilot in his task.
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Fig. 7. Execution modes of the synthetic pilot.

5 Conclusion and Future Works

In this paper, we proposed a synthetic pilot based on the ACT-R cognitive
architecture and using an ontological reference model as a knowledge base. This
reference model includes a domain ontology that captures and formalizes the
internal, external environments and navigation systems of aircraft, and a task
ontology that captures and formalizes piloting procedures. To carry out its mis-
sion, the synthetic pilot uses an interpreter made up of SWRL rules, allowing
automatic manipulation of the knowledge provided by the ontological reference
model. In its quest for a solution, it dynamically generates and displays a 3D
directed graph, which it navigates to determine the tasks to be executed.

Experiments have demonstrated the agent’s ability to perform a complete
takeoff procedure, similar to a human expert pilot. Furthermore, the agent can
execute a takeoff recovery and reconfigure, in certain cases, a path in the form of
a directed graph not foreseen in the reference model to achieve the set objective.
Finally, the cognitive agent can be used in two modes: an autonomous mode in
which it carries out the procedure from A to Z, presenting the different steps,
and an interactive mode where it provides recommendations to the human pilot.
In this way, the pilot can perform the actions recommended by the system to
avoid deviations.

The next stage of this study will be to validate our proposal by testing the
synthetic pilot in real-life situations, for example on the X-Plane flight simulator.
Another focus will be to develop a synthetic pilot able to perform procedures
related to abnormal tasks that occur during takeoff, such as “Dual engine failure
with fuel remaining”, “Engine failure after V1”, “Reactive Windshear”, “Rejected
Takeoff”, “TCAS event” and “Stall recovery’. Finally, a future perspective will
focus on enhancing the understanding of our synthetic pilot by integrating knowl-
edge from learning pilot behavioral profiles from real flight data [21].
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Abstract. This study examines how conversational agents’ language (formal vs.
informal) and text structures (comparison vs. causation) impact student language
in written summaries using an intelligent tutoring system (ITS). We used the
Coh-Metrix-ENA approach, which integrated Coh-Metrix and epistemic network
analysis (ENA), to examine the structure of language connections in students’writ-
ten summaries. Results revealed both agent language and text structures impacted
student language. Specifically, informal agent language elicited a stronger lan-
guage connection between nonnarrativity and word abstractness in both causa-
tion and comparison texts in the posttest network. However, in causation texts,
both informal and formal agent language induced a weaker language connec-
tion between syntactic complexity and deep cohesion, which improved students’
tendency to overuse causal connectives. Moreover, in comparison texts, informal
agent language elicited aweaker language association between syntactic complex-
ity and referential cohesion. Implications are discussed regarding the design of
conversational agent language and text characteristics for interventions to improve
summarization strategies and academic language skills.

Keywords: AutoTutor ARC · Coh-Metrix · Conversational agent · Epistemic
Network Analysis · Formality · Intelligent tutoring system · Summary writing

1 Introduction

It is crucial for K-12 students to master academic language skills and embrace an aca-
demicwriting style to demonstrate their knowledge and enhance their comprehension [1,
8]. Nevertheless, it is challenging for students to achieve this standard [23]. Increased
exposure to academic language, such as teachers’ use of academic language, explicit
instruction in academic language, and utilizing reading materials in academic contexts,
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is likely to enhance students’ academic language skills. Summary writing, particularly
in such tasks as reading-to-write or source-based writing [10], is used to assess students’
deep reading comprehension and also promotes the development of academic language
skills. A recent study found that students improved language use in their written sum-
maries following summarization interventions guided by conversational agents within
an Intelligent Tutoring System (ITS) [14]. Informal and formal conversational agents
induced distinct changes in language use. However, the study did not delve into how text
structures of source texts contribute to student language use beyond the effect of agent
language, which is within the scope of the present study.

This study adopts the methodologies and analyses outlined in the previous study [14]
to investigate howconversational agent language (formal vs. informal) and text structures
(comparison vs. causation) impact student language through a summarization interven-
tion in an ITS, AutoTutor ARC (Adult Reading Comprehension). The research makes
two significant contributions to understanding student language use. Firstly, through
fine-grained analyses, this study aims to illuminate the interactive effects of agent lan-
guage and text structures of source texts on student language use. These findings will
inform the design of agent language within the ITS and highlight the importance of text
characteristics, such as text structures during summarization interventions. Secondly,
this study intends to provide additional empirical evidence regarding the efficacy of
the Coh-Metrix-ENA approach that integrates Coh-Metrix language features and Epis-
temic Network Analysis (ENA) to reveal subtle differences in language associations
across multiple language and discourse levels. Such a methodology has the potential to
advance language research.

1.1 Theoretical Framework and Coh-Metrix

The pragmatics-based framework offers a holistic viewpoint on teacher language from
diverse language aspects such as linguistic and cognitive attributes [26]. These attributes
encompass interpersonal stance, information load, organization of information, lexical
choices, representational congruence, genremastery, commandof reasoning or argumen-
tative strategies, and disciplinary knowledge. However, researchers studied teacher lan-
guage at the lexical, syntactic, and text-based levels. For example, Gámez and Lesaux [3]
discovered a positive association between students’ vocabulary skills and teachers’ use
of sophisticated academic vocabulary and complex syntax. More studies have revealed
a substantial correlation between teacher language and student language development
[17] in English [4], Chinese [27], French [24], Spanish [20], etc.

The multilevel theoretical framework involves six theoretical levels for deeper text
comprehension [6]: word, syntax, textbase (e.g., explicit ideas), situation model (e.g.,
subject matter content), genre and rhetorical structure (e.g., cause-effect), and prag-
matic communication (e.g., theme). Coh-Metrix, an automated text analysis tool, oper-
ates within the multilevel framework and provides most language features listed in the
pragmatics-based framework [26]. Five major Coh-Metrix components align with the
first five levels of the multilevel framework, and each represents ease of comprehension
or inversely, text difficulty as described below:

(1) word concreteness (inverse of word abstractness) gauges the meaningfulness of
concrete words that evoke mental images over abstract ones,
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(2) syntactic simplicity (inverse of syntactic complexity) measures the ease of pro-
cessing and understanding sentences, represented by fewer words and simple and
familiar syntactic structures,

(3) referential cohesion evaluates the overlap of words and ideas across sentences,
contributing to threads that connect to the explicit textbase,

(4) deep cohesion involves the use of causal, intentional, or other connectives or con-
ceptual ideas to facilitate a more coherent and deeper comprehension at the level of
the situation model, and

(5) narrativity (inverse of nonnarrativity) assesses the extent to which a text tells a
story, linking closely to a familiar narrative style, such as everyday conversations.

These components (reversed 1, 2, 5) are aggregated to form a composite formal-
ity score, scaling text difficulty [7]. Formal discourse is defined as using language in
printed materials or meticulously prepared speeches, requiring precision, coherence,
articulation, and persuasion tailored for an educated audience. Informal discourse is at
the opposite end of the spectrum, rooted in spontaneous oral communication, narrative
elements, and abundant use of pronouns, verbs, and adverbs, relying on shared back-
ground knowledge. Therefore, the formality score increases with more abstract words,
complex syntax, referential cohesion, deep cohesion, and informational text.

1.2 Summarization and Text Structures

Compared to multiple-choice (MC) tests, summarization allows for evaluating deep
reading comprehension skills by requiring students to identify and articulate the main
ideas of a text and integrate them into a cohesive whole [2, 9]. Established on the
Construction-Integration (CI) model of text comprehension [13] and the developmental
model of writing, summary writing [12] entails both understanding the source text and
accurately conveying its ideas using academic language [2, 24]. Text structures delineate
the logical connections and hierarchical relationships among ideas within a text [22].
These connections aid in constructing mental representations in learners, similar to
an organizational structure crafted by authors [21]. Previous studies demonstrated the
positive impact of instruction on the text structures on learners’ comprehension and
retention of information across various age groups [11]. However, the impact of language
characteristics in source texts on student language remains unexplored, a gap addressed
in the present study.

Creating a summary of an expository science text demands written language skills.
Summary writing requires articulating abstract concepts in academic settings, and aca-
demic language plays a significant role in summarizing scientific expository texts [2].
For instance, proficient writers, whether in their first language (L1) or second language
(L2), demonstrated higher levels of syntactic complexity and used more adversative
connectors in their written summaries than less proficient writers. Only the L1 writers
tended to employ more sophisticated vocabulary and diverse phrases [24]. Furthermore,
there was an intrinsic link between syntactic complexity and connectors.

Recent studies manipulated conversational agent language within an ITS, AutoTutor
ARC, to investigate the impact of agent language on student language [14–16]. In the for-
mal condition, both teacher and student agents spoke the formal language, whereas in the
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informal condition, both agents spoke the informal language. No significant difference
was detected when student language was measured by the five Coh-Metrix compo-
nents [14–16]. Interestingly, a significant impact of agent language on student language
was identified when the Coh-Metrix-ENA methodology was used to explore the struc-
ture of language connections in students’ written summaries. These findings highlight
the effectiveness of the Coh-Metrix-ENA approach in detecting nuanced variations in
student language, outperforming the method of isolated language features.

Specifically, conversational agents using informal language prompted students to
employ more abstract vocabulary in their nonnarrative summaries [14]. Conversely,
those exposed to formal agent language demonstrated increased usage of referential
cohesion in their nonnarrative summaries. Additionally, students in the formal language
group exhibited a stronger language connection between deep cohesion and syntactic
complexity on the pretest than on the posttest, due to the overuse of causal connectives
on the pretest. Nonetheless, the study did not reveal how the text structures of source
texts contribute to variations in language use beyond the effect of agent language. To
address this gap, the present study utilizes the ENA-Coh-Metrix approach to explore the
following research questions:

Q1. Does conversational agent language impact student language in written summaries
when the source texts are comparison texts?
Q2. Does conversational agent language impact student language in written summaries
when the source texts are causation texts?

2 Method

2.1 Participants and Procedures

Individuals who wanted to improve their English summary writing skills were recruited
from Amazon Mechanical Turk (AMT) with a compensation of $30 for a three-hour
intervention. Participants were screened and then randomly assigned to one of two
groups, informal or formal. 118 participants completed the experiment, 56 in the formal
group and 62 in the informal group respectively (MAge = 33.25, SDAge = 8.43; females,
41.8%). Participants had diverse nationalities: 10.7% from the U.S., 61.5% from India,
13.1% from China, and the rest from other Asian, European, and African countries.
The country did not show a significant difference. The language learners accounted for
86.9% of participants, studied English for an average of 17.62 years (SD = 8.02), and
spent 3.95 years (SD = 7.36) in a foreign country. Most participants held a bachelor’s
degree (43.4%) or above (39.3% with a master’s degree or higher).

Participants read eight texts and wrote eight corresponding summaries: four com-
parison and four causation texts. The source text had an average of 260.13 words (SD
= 63.47) with text difficulty in grades 8–11. Two comparison texts (Walking and Run-
ning, Kobe and Jordan) and two causation texts (Effects of Exercising, Diabetes) were
randomly selected for the intervention. The other two comparison texts (Butterfly &
Moth, Hurricane) and two causation texts (Floods, Job Market) were used for pretest
and posttest, with one comparison text and one causation text on each test. A balanced
4 × 4 Latin-square design controlled for the order effect.



Impact of Conversational Agent Language and Text Structure 221

Participants’ summarywriting proficiencywas assessed before and after using a sum-
marization intervention delivered by trialogue-based conversational agents in AutoTutor
ARC. Two computer agents (see Fig. 1), a tutor agent and a peer agent, led participants
interactively to learn summarization strategies. The intervention included a brief lec-
ture introducing text structures and corresponding signal words, such as “unlike” for
differences in comparison texts and “therefore” for effects in causation texts. Then, par-
ticipants read four expository texts, completed five MC questions for each text, received
personalized feedback and scaffolding, and practiced identifying topic sentences, main
ideas, text structure, and important information from source texts. They then wrote and
evaluated a summary for each textwithout receiving any feedback or scaffolding. Finally,
they evaluated three pre-designed summaries and received personalized feedback. They
received no feedback or scaffolding for any task on the pretest and posttest.

Participants were directed to utilize signal words and topic sentences and include
main ideas and important information in their summaries. Coh-Metrix 3.0 was employed
to compute five Coh-Metrix components (percentile scores), including word abstract-
ness, syntactic complexity, referential cohesion, deep cohesion, and nonnarrativity from
their written summaries (see 1.1 for details). These component scores were standardized
for the final analysis.

Note.

A. Teacher agent, Cristina

B. Student agent, Jordan

C. Text

D. Question

E. Answer choices

F. Submit button

Fig. 1. A screenshot of the interface during the training session.

2.2 Manipulation for Agents Language

The Expectation and Misconception-Tailored (EMT) dialogue mechanism was
employed to design agent conversations [5]. The agent initiated dialogue by posing
a challenging question to the learner, anticipating a correct response, and then employed
a five-step tutoring frame to guide the learner towards the correct answer (see Fig. 2): (1)
the agent presented the question, (2) the learner gave an initial response, (3) the agent
gave brief feedback on the response, (4) hint-assertion dialogue moves were used to
steer the learner towards the expected answer, and (5) the conversation concluded.
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An expert in discourse processes created agent conversations in formal and informal
languages, considering five discourse levels: word, syntax, referential cohesion, deep
cohesion, and genre. Formal conversations contained more sophisticated words (e.g.,
statement vs. answer), more complex sentence structures (e.g., complex vs. simple sen-
tences), more content word overlap (e.g., repeating content words), more connective
(e.g., so), and a nonnarrative style (e.g., impersonal articles vs. 1st- and 2nd-person pro-
nouns). Another expert validated the naturalness and appropriateness of the generated
conversations. Below are two examples of agent language in formal and informal styles,
where the tutor agent explained the incorrect choice the student made:

Formal language: The second statement only discusses the positive effect of preventing
health problems. Therefore, it fails to summarize all the positive physical effects.
Informal language:We find this answer shows a specific effect, not general effects. This
one is not correct.

In the formal condition, both the tutor agent, Cristina, and the peer agent, Jordan,
utilized formal language,whereas in the informal condition, both agents utilized informal
language. The agent language formality in each condition was assessed by Coh-Metrix
formality scores: the mean score for conversations in the formal group was 4.70 (SD
= 1.89), and the mean score for conversations in the informal group was −2.00 (SD =
0.82). Both scores aligned with the experts’ perceptions of formality.

Note. Red boxes indicate 

manipulated agent language. 

Yellow boxes indicate learners’ 

responses. Gray boxes indicate 

conversations between two 

agents.

Fig. 2. Dialogue moves during the intervention.

3 Analyses, Findings, and Discussions

This study employed the methodology used in prior research [14], visualizing the ENA
networks and conducting one-way ANOVA analyses on 10 language connections. The
only difference between this study and the prior study lies in dividing the dataset into
two subsets: a comparison dataset and a causation dataset. We used the rENA package
in R [18] to generate superimposed and subtracted ENA networks for language connec-
tions on the pretest and posttest [25] within a one-moving summary window. The units
and conversations were the test (pretest and posttest), condition (formal and informal),
and students. In the ENA plot, each node represents an individual learner: red denotes
the pretest results, whereas blue signifies the posttest outcomes. The larger and darker
nodes indicate stronger connections, and the darker and thicker lines represent the co-
occurrence of two Coh-Metrix components. The red lines depict language connections
on the pretest, while the blue lines denote those on the posttest.



Impact of Conversational Agent Language and Text Structure 223

3.1 The Impact of Agent Language Within Comparison Texts

To answer the first question, “Does conversational agent language impact student lan-
guage in written summaries when the source texts are comparison texts?” we first visual-
ized the superimposed and subtracted networks for the comparison texts in the informal
condition. Figure 3a and 3b illustrate these networks, displaying a thicker blue line
connecting word abstractness and nonnarrativity. This stronger connection shows a pat-
tern of a stronger association between word abstractness and nonnarrativity in students’
summaries for the informal condition on the posttest compared to those on the pretest.
Moreover, the light red line that connects syntactic complexity and referential cohesion
indicates a weaker language connection on the pretest. Figure 3c and 3d illustrate very
weak connections between referential cohesion and nonnarrativity, as well as between
syntactic complexity and referential cohesion on the posttest. Similarly, weak connec-
tions were observed between deep cohesion and nonnarrativity, and between syntactic
complexity and deep cohesion on the pretest. While the visualization in the formal con-
dition demonstrates the trend of changes in language connections from the pretest to the
posttest, further analyses are necessary to determine the significance of these observed
changes.

The results of a one-way ANOVA on the mean of the pretest and posttest indi-
cated a marginally significant effect of agent language on student language, with a small
effect size, F(1, 124) = 3.69, p = 0.057, η2 = 0.03. Specifically, the mean rotation was
marginally higher on the posttest (M = 0.06, SD= 0.29) than on the pretest (M =−0.03,
SD= 0.25). The results of one-way ANOVA analyses for 10 language associations (see
Table 1) indicated a significant, stronger connection between nonnarrativity and word
abstractness on the posttest (M = 0.23, SD = 0.21) than on the pretest (M = 0.15, SD
= 0.19), with a small effect size, F(1, 124) = 5.01, p = 0.027, η2 = 0.04. However,
this trend was not identified in the formal group. These findings were consistent with
prior research [14], suggesting that conversational agents’ informal language, rather than
formal language, promoted students to use more abstract words in nonnarrative sum-
maries with comparison texts as source texts. Thus, these findings are likely to support
the personalization principle for the multimedia instruction design [19], indicating that
conversational language motivates learners to use more abstract words and write more
informational summaries.

Results also indicated a marginally significant, weaker connection between syntactic
complexity and referential cohesion on the posttest (M = 0.30, SD = 0.18) than on the
pretest (M = 0.36, SD = 0.19), with a small effect size, F(1, 124) = 3.72, p = 0.056,
η2 = 0.03. Similarly, this pattern was not identified in the formal group. This finding
was not detected in prior research [14] when analyzing comparison and causation texts
together, suggesting its uniqueness to comparison texts. This trend likely resulted from
the characteristics of comparison texts. Specifically, summaries compare the similarities
and differences between two objects, which involves repeating the keywords within
the adjacent sentences (see underlined words in Example 1). These overlapped words
resulted in high referential cohesion. This phenomenon was not seen in the second
example, which led to low referential cohesion. Learners are also likely impacted by the
informal language agents use, mimicking their conversational style to construct simpler
sentences, as illustrated in Example 3.
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3a 3b

3c 3d

Fig. 3. ENA networks for comparison texts.

Example 1 (Pretest): High Syntactic Complexity = 1.00, High Referential Cohesion
= 1.00.

Hurricane Andrew and Katrina were the most destructive hurricanes to hit the
US in 1992 and 2005 respectively. Hurricane Andrew in Homestead Florida was
category five with winds measuring 175 miles per hour, seven inches of rain and
storm surges of 17 feet resulting in 26 deaths and 25 billion in damages. Hurricane
Katrina was a category 3 with 120 miles per hour winds and on the path of the
city of New Orleans, flooding 80 of the city leaving 1800 dead and 81 billion in
damages.

Example 2 (Posttest): High Syntactic Complexity = 0.88, Low Referential Cohesion
= 0.17.
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Table 1. Descriptives and ANOVA results of 10 line weights for comparison texts

Language Test Formal (F(1, 111)) Informal (F(1, 124))

Mean SD F η2 Mean SD F η2

Nonnarrativity*
Word Abstractness

Post .20 .21 .63 .01 .23 .21 5.01* .04

Pre .17 .18 .15 .19

Nonnarrativity*
Syntactic Complexity

Post .40 .20 .18 .002 .39 .19 .04 .0003

Pre .42 .24 .39 .19

Nonnarrativity*
Referential Cohesion

Post .42 .19 2.17 .02 .44 .20 .09 .001

Pre .37 .20 .43 .19

Nonnarrativity*
Deep Cohesion

Post .25 .23 1.86 .02 .27 .21 .00 .00001

Pre .31 .22 .27 .21

Word Abstractness*
Syntactic Complexity

Post .12 .12 .12 .001 .14 .14 2.34 .02

Pre .11 .14 .11 .12

Word Abstractness*
Referential Cohesion

Post .12 .10 1.36 .01 .14 .13 .94 .01

Pre .09 .12 .12 .14

Word Abstractness*
Deep Cohesion

Post .11 .15 .00 .00001 .10 .12 .03 .0003

Pre .11 .14 .09 .13

Syntactic Complexity*
Referential Cohesion

Post .35 .20 1.69 .01 .30 .18 3.72† .03

Pre .30 .20 .36 .19

Syntactic Complexity*
Deep Cohesion

Post .17 .16 2.54 .02 .18 .16 .52 .004

Pre .22 .17 .20 .16

Referential Cohesion*
Deep Cohesion

Post .22 .21 .45 .004 .22 .19 .55 .004

Pre .24 .21 .24 .20

Note. **, p < .01; *, p < .05; †, p < .10, which apply to all the tables.

Hurricanes Andrew and Katrina were some of the most horrendous natural dis-
asters to hit the USA. These were massive catastrophes that are still felt to this
day in the south east of the country. Katrina was a category 3 hurricane while
Andrew was a category 5. Both of these natural disasters had powerful winds that
destroyed significant portions of manmade constructions in their respective areas.

Example 3 (Posttest): Low Syntactic Complexity = 0.10, High Referential Cohesion
= 0.89.

The two most destructive hurricanes in the United States were Hurricane Andrew
and Hurricane Katrina. Both inflicted major damage. 26 people died in Andrew
and 1800 died in Katrina. Both caused devastation. Hurricane Andrew caused
25 billion in damage while Katrina caused about 81 billion. Yet when measuring
hurricane strength Andrew was the stronger of the two.
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To sumup, the answer to the first question is yes: informal agent language likely facil-
itates students to write more informational summaries with more abstract words. More-
over, agents’ informal language is likely to prompt students to mimic agents’ language
style, resulting in using fewer complex sentences or fewer content words.

3.2 The Impact of Agent Language Within Causation Texts

To answer the second question, “Does conversational agent language impact student
language in written summaries when the source texts are causation texts?” we also first
visualize the superimposed and subtractednetworks for the causation texts in the informal
condition. Figure 4a and 4b also display a thicker blue line connecting word abstractness
and nonnarrativity, indicating a stronger association between word abstractness and
nonnarrativity in students’ summaries on the posttest compared to those on the pretest in
the informal condition. Moreover, the light red lines that connect syntactic complexity
and deep cohesion, as well as referential cohesion and deep cohesion, indicate these
language connections were stronger on the pretest rather than on the posttest. This
pattern was also found in the formal condition (see Fig. 4c and 4d). However, a weak
connection between nonnarrativity and deep cohesion was observed in the posttest.

The results of a one-way ANOVA on the mean of the pretest and posttest revealed a
significant effect of agent language on student language with a small effect size in both
informal group, F(1, 124)= 5.00, p= 0.027, η2 = 0.04, and formal group, F(1, 111)=
5.47, p= 0.021, η2= 0.05. In the informal group, themean rotationwas also significantly
higher on the posttest (M = 0.08, SD = 0.28) than on the pretest (M = −0.03, SD =
0.26). Further analyses of language associations (see Table 2) demonstrated a significant,
stronger connection between word abstractness and nonnarrativity on the posttest (M =
0.26, SD = 0.17) than on the pretest (M = 0.19, SD = 0.17) with a small effect size,
F(1, 124) = 5.01, p = 0.021, η2 = 0.04. However, this pattern was not identified in the
formal group. These findings were consistent with those identified in comparison texts,
implying that agents’ informal language is likely to facilitate students in composingmore
informational summaries with greater use of abstract words, regardless of text structure
type (comparison or causation).

Results also revealed a marginally significant, weaker connection between syntactic
complexity and deep cohesion on the posttest (M = 0.25, SD= 0.17) than on the pretest
(M = 0.31, SD = 0.17), with a small effect size, F(1, 124) = 3.47, p = 0.065, η2 =
0.03. Interestingly, in the formal group, this connection significantly weakened on the
posttest (M = 0.26, SD = 0.18) in comparison to the pretest (M = 0.33, SD = 0.18),
with a small effect size, F(1, 111) = 4.39, p = 0.038, η2 = 0.04. These findings align
with previous research [14] (see examples in [14]), confirming that after interventions,
students demonstrated increased awareness of the correct use of causal connectives on
the posttest more than the pretest, regardless of agent language style (formal or informal)
in causation texts.
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4a 4b

4c 4d

Fig. 4. ENA networks for causation texts.

To sum up, the answer to the second question is yes: informal agent language likely
facilitates students to write more informational summaries with high use of abstract
words. Furthermore, regardless of the language style employed by agents, either formal
or informal, conversational agents assisted students in reducing the excessive use of
causal connectives in causation texts when students used more complex sentences in
summaries.
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Table 2. Descriptives and ANOVA results of 10 line weights for causation texts

Language Test Formal (F(1, 111)) Informal (F(1, 124))

Mean SD F η2 Mean SD F η2

Nonnarrativity*
Word Abstractness

Post .18 .16 1.11 .01 .26 .17 5.48* .04

Pre .15 .15 .19 .17

Nonnarrativity*
Syntactic Complexity

Post .30 .20 .02 .0002 .27 .20 .13 .001

Pre .30 .21 .26 .18

Nonnarrativity*
Referential Cohesion

Post .29 .18 2.13 .02 .26 .14 .0000 .00001

Pre .25 .14 .26 .15

Nonnarrativity*
Deep Cohesion

Post .45 .24 1.71 .02 .46 .22 .32 .003

Pre .39 .23 .43 .20

Word Abstractness*
Syntactic Complexity

Post .12 .12 .19 .002 .14 .13 1.00 .01

Pre .13 .12 .12 .12

Word Abstractness*
Referential Cohesion

Post .11 .12 .05 .0004 .13 .11 .02 .0001

Pre .11 .12 .13 .13

Word Abstractness*
Deep Cohesion

Post .18 .18 .01 .0001 .25 .18 .19 .002

Pre .19 .17 .24 .20

Syntactic Complexity*
Referential Cohesion

Post .23 .20 1.11 .01 .19 .18 .66 .01

Pre .27 .19 .22 .19

Syntactic Complexity*
Deep Cohesion

Post .26 .18 4.39* .04 .25 .17 3.47† .03

Pre .33 .18 .31 .17

Referential Cohesion*
Deep Cohesion

Post .29 .20 1.54 .01 .28 .21 2.21 .02

Pre .34 .21 .34 .20

4 Conclusions, Future Directions, and Implications

The study investigated how conversational agent language (formal vs. informal) and
text structures (comparison vs. causation) impact student language in written summaries
using the Coh-Metrix-ENA approach. The results revealed that both agent language and
text structures impacted students’ language use in theirwritten summaries to some extent.
Specifically, when conversational agents spoke informal language, students tended to
employ more abstract words when writing nonnarrative summaries for comparison or
causation texts. Moreover, students tended to reduce the excessive use of causal connec-
tives irrespective of agent language style when they composed summaries containing
more complex sentences. Furthermore, students tended to use low referential cohesion
when their summaries contained more complex sentences only when they learned with
agents who spoke informally, and when the source texts were comparison texts.
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This study provides insights into the design of conversational agent language and the
consideration of text characteristics for reading-to-write tasks, especiallywhen the objec-
tive is to improve students’ academic language skills in writing. Our findings revealed
three distinct patterns of student language use impacted by: (1) informal agent language
regardless of text structures, such as nonnarrativity and word abstractness, (2) causa-
tion texts regardless of agent language styles, such as syntactic complexity and deep
cohesion, and (3) informal agent language and comparison texts, such as syntactic com-
plexity and referential cohesion. These patterns imply that the design of agent language
and curriculum for summarization interventions should consider both the characteris-
tics of text structures and their effect on student language use when the objective is to
improve academic language skills. Given that the participants are recruited from AMT
and have diverse nationalities, further empirical evidence is essential to generalize the
findings to other learners.

Another significant contributionof this study is its validationof the consistent efficacy
of the Coh-Metrix-ENA approach in discerning nuanced differences in the structure of
language associations compared to individual language features in isolation. Moreover,
the ENA network visualizations explicitly illustrate these differences in the structure of
language connections, aiding in interpreting results. Furthermore, the ENA networks
provide clear visual representations of the discernible patterns of variance in language
structures on the pretest and posttests in terms of text structures and agent language
styles. Specifically, the visualization suggests that agent language has a greater influence
on student language in summaries of comparison texts compared to those of causation
texts. However, discerning the significance of these differences remains challenging and
statistical analyses are necessary for validating their significance.

In addition, each dataset comprises 10 language connection comparisons within each
condition, and applying the Bonferroni correction requires smaller p-values than .05,
potentially rendering the results marginally significant or non-significant. Thus, addi-
tional empirical evidence is needed to examine whether the same patterns of variation
in language connections consistently exist and whether the patterns align with linguis-
tic, pragmatic, and communication theories. Further studies could compare language
connection patterns between good and poor summaries to discern underlying variations.
These insights will guide researchers and educators in designing conversational agent
language with the consideration of text structures and agent language to enhance both
deep comprehension and academic language skills.
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Abstract. This study explores the use of Generative AI, particularly large lan-
guage models such as ChatGPT, in promoting self-directed learning among begin-
ners in programming and data analysis, in the study structured prompts were
employed as a key tool to enhance educational engagement and skill acquisition.
To study the impact, Engineering students participated in a controlled environ-
ment where they utilized these prompts in conjunction with Generative AI to
tackle programming-based data analysis tasks independently. We measured the
impact of this method by comparing pre-test and post-test scores, which showed
a significant improvement, indicating its effectiveness. Moreover, 45% of novice
participants completed all assigned tasks.Wealso conducted semi-structured inter-
views and analyzed participant responses to understand the role of prompt engi-
neering in self-directed learning. The analysis revealed that structured prompts
and Generative AI motivate students and empower them to learn independently.

Keywords: Chatgpt · Prompt engineering · Self-directed learning · Data analysis

1 Introduction

The primary challenge in self-directed computer-based learning is often the absence of
robust support systems [1], which can hinder students from effectively engaging with
andmastering new technologies and concepts on their own. Traditional Intelligent Tutor-
ing Systems (ITS) and web-based learning environments frequently lack the necessary
guidance, especially for complex subjects such as programming and data analysis [2].
In response to these challenges, Generative AI, particularly advanced language models
like OpenAI’s ChatGPT, offers a promising solution. These AI systems are capable of
generating human-like text responses and can be seamlessly integrated into educational
environments to facilitate personalized learning experiences [3].

Existing research shows that systems integrating Generative AI with learning envi-
ronments, such as classrooms, web-based platforms, and mobile learning applications,
for example, “Duolingo, EduMentor, and Khanmigo by Khan Academy, etc.” utilize
these AI capabilities to foster a more engaging learning experience [4–6]. However, it
is frequently reported that responses provided by Generative AI may seem irrelevant or
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misleading, which complicates the learning process. One of the possible root causes of
these challenges may be identified as inadequate prompting skills, where students do not
know how to formulate queries and prompts to extract useful information and guidance
from AI systems [7, 8].

To address this gap, this study focuses on integrating structured prompt engineering
with Generative AI to enhance its utility for beginners in programming and data analysis.
Prior research has predominantly targeted AI code-generators for experienced program-
mers, leaving novices behind [9]. This research seeks to fill this void by investigating
how effective prompt engineering can be implemented to improve learning outcomes
and enable students to conduct data analysis independently. The study involved a struc-
tured prompt training session in which participants were taught how to use prompting
skills effectively with Generative AI. Following this training, students undertook data
analysis tasks independently.

Hence, the research focus of our study is:

RQ1:Howdoes structured prompt engineeringwithGenerativeAI, influence themastery
of programming and data analysis concepts among learners with no prior programming
experience?
RQ2: What is the role of Generative AI and structured prompt training in fostering
self-directed learning and task completion efficiency in data analysis education?

In response to the research questions, this study involved 20 participants aged 24 to
29, all beginners in text-based programming and data analysis. These individuals, from
various engineering disciplines, participated in a one-hour training session on prompt
engineering and applied this skill in a following 3-h session where they used Gener-
ative AI to address data analysis challenges. The effectiveness of this approach was
confirmed as 45% of the participants completed all three data analysis tasks. Moreover,
the results demonstrated significant learning improvements in programming knowledge
with paired sample t-test statistics indicating a substantial effect size of 0.89 and a
p-value<0.05. Additionally, qualitative data from semi-structured interviews were ana-
lyzed using existing themes from the literature: “Empowerment, Joy of Learning, and
Task-oriented” [10, 11] These results highlight the effectiveness of using prompt engi-
neering and Generative AI to promote self-directed learning, as participants not only
improved their technical skills but also gained the ability to independently navigate and
overcome complex challenges, thereby enriching their overall educational experience
and autonomy.

The next sections of the paper are discussed as follows: Sect. 2 reviews current
research on Generative AI in the programming domain, prompting techniques, and iden-
tifies research gaps. Section 3 details the instruments used in this study, including prompt
training, and describes the user study and participants. Section 4 presents results and
discussions related to the research questions. Finally, Sect. 5 concludes the paper and
outlines future work.
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2 Backgrounds and Literature Review

The literature review explores Generative AI’s applications in education, focusing on
ChatGPT’s role in various learning contexts, structured prompt engineering frameworks,
and identifying gaps in research in programming and data analysis.

2.1 Generative AI in Education

Generative AI tools, such as ChatGPT, have gained traction for their capacity to gener-
ate responses and content that mimic human interaction, using advanced deep learning
algorithms and vast amounts of text data [12]. A systematic literature review explores
the applications of AI tools in education, highlighting advancements in personalized
tutoring, interactive learning, adaptive learning, automated essay grading, language
translation, and content creation, contributing to the evolving landscape of Generative
AI-enhanced education [13–16].

Transitioning from the vast applications of generative AI to its specific role in pro-
gramming, recent studies have explored the impactful role of generative AI. An experi-
mental study showcased how the programming tool Codex, powered by generative AI,
outperformed learners in a CS1 class on a rainfall problem, ranking in the top quar-
tile [17], Another investigation used the flake8 tool to assess code generated by AI
against the PEP8 coding style, revealing a minimal syntax error rate of 2.88 [18]. A
notable study involved Github’s generative AI platform, which initially failed to solve
87 Python problems; however, applying prompt engineering techniques enabled it to
resolve approximately 60.9% of them successfully [19].

These research highlights the efficacy of generative AI in code generation, empha-
sizing the significance of prompt engineering in maximizing its potential in educational
settings.

2.2 Prompt Engineering

Mastering prompt engineering is crucial for unlocking Generative AI’s potential in edu-
cation, as it significantly impacts the quality of interactions with AI language models.
This skill requires understanding principles influencing AI processing, providing clear
prompts for tokenization, embedding, and response accuracy, and providing rich contex-
tual information for relevant connections. It also involves specifying response formats
and controlling verbosity to meet user expectations and optimize AI-assisted learning
experiences.

However, understanding these principles is just the beginning. Practical application
demands a structured approach, embodied in the CLEAR framework. The Framework
emphasizes the importance of crafting Concise prompts, ensuring brevity and focus;
Logical, to aid AI in grasping context and concept relationships for coherent outputs;
Explicit, specifying desired output characteristics to prevent off-target responses;Adap-
tive, encouraging flexible prompt experimentation to find the right mix of creativity and
precision; andReflective, advocating for ongoing prompt refinement based on past inter-
actions to enhance future AI engagements [20]. Additionally, to enhance interactionwith
AI models, openAI suggested tactics including clear instructions, personas, delimiters,
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task steps, examples, output length, reference texts, breaking down complex tasks, intent
classification, dialogue summarization, and piecewise document summarization, allow-
ing GPT models time to think and using external tools like embedding-based search can
also enhance knowledge retrieval efficiency [21].

2.3 Identification of Gaps in Existing Literature

The literature on Generative AI’s technical capabilities in code generation and problem-
solving is limited, focusing on its broader educational impact and learner interaction. The
underexplored area is the impact of using tools like ChatGPT with prompt engineering
on self-directed learning and its effects on learning outcomes.

3 Study Design

The study uses a task-based approach to gather detailed data for data analysis, focus-
ing on active participation and exploring learning methodologies to demonstrate how
Generative AI and prompt engineering can improve educational outcomes.

3.1 Selection of Concept of Data Analysis for the Task

This study emphasizes two key data analysis skills: data aggregation and data merging.
Data aggregation is crucial for summarizing and revealing trends in raw data, while data
merging integrates different data sets for a unified analysis perspective [22]. These skills
are essential for beginners and laying the groundwork for advancing into more complex
analytics tasks. The goal is to equip learners with confidence and skills for a seamless
transition into the wider realm of data analysis.

3.2 Dataset for the Task and Problem Statement for the Task

Thedataset, spanningSeptember to January, includes over 10,000observations of student
video usage, student ID, school ID, view count, and last access date and time. It provides
a comprehensive view of student engagement with video content, inspired by a school
education program where tablets are provided to enhance learning.

Based on the given dataset, the task is designed that way so that it can not be com-
pleted with no programming software like Excel and Tableau, etc., The following are
the problem statements of the task:

T1: Calculate the total daily video usage for each student throughout the program.
T2: Given the unique data capture cycle of student video usage (the 26th of one month
to the 25th of the next), compute the monthly total video usage for each student,
T3: Calculate the monthly video usage for each school over all the months.

Toperform the taskPython language is selected, the rationale behindPython is chosen
for data analytics education due to its simplicity, robust functionality, versatility with
big data and machine learning frameworks, strong community support, and practicality
for real-world applications [23].
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3.3 Instrument Designed: Pre-post Test and Sus Survey

In this study, A set of 15 MCQs was created to assess participants’ understanding of
aggression and merging concepts in Python programming. The test, designed across
three levels of Bloom’s taxonomy, included five questions each: Understanding (L1),
Applying (L2), and Analyzing (L3). Emphasizing practical application, the questions
were derived from official pandas documentation and underwent multiple validations by
industry experts to ensure their effectiveness.

The System Usability Scale (SUS) was adapted to methodically capture feedback
on the Generative AI tool used in data analysis [24].

3.4 Design of Structured Prompt Training

Fig. 1. Example used in prompt training: Top image: structured Prompt example-1 regarding the
reducing the single-use of plastic from daily life and bottom image structured prompt example-2
regarding the filtering and aggregating of the dataset

A one-hour training session has been designed to introduce participants to prompt
engineering, employing an example-based approach. Initially, the CLEAR framework
and strategies from OpenAI’s documentation are explained to lay the foundation. Sub-
sequently, two examples of structured prompts are presented to illustrate the concepts
in practice.
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The first example is non-contextual, featuring a question about “reducing the use of
single-use plastic from daily life” as shown in Fig. 1 (top-side). This example is chosen
for its general nature, ensuring that even students with limited programming or data
analysis experience can grasp the concept of structured prompts. The structured prompt
for this question is crafted to build trust and provide an easy introduction to the topic.

The second example is contextual and directly related to the field of study. It involves
showing students a CSV with a dataset different from the one used in the tasks. For this
dataset, a structured prompt is written based on a specific problem statement as shown in
Fig. 1 (bottom side). This approach not only demonstrates the application of structured
prompts in a relevant context but also prepares students for the types of tasks they will
encounter. This careful, step-by-step approach ensures that all participants, regardless of
their background, can effectively engage with and understand the principles of prompt
engineering, setting a solid foundation for their subsequent tasks in data analysis.

3.5 Participant

This study involved 20 graduate-level participants, all familiar with ChatGPT or similar
AI tools but without formal training in programming or data analytics. This selection
ensured a uniform baseline of understanding across the 12 male and 8 female partici-
pants, aged 24 to 29. Each participant had access to ChatGPT 3.5 and shared English
as their formal education language, minimizing language barriers. Their lack of prior
prompt engineering experience set a consistent starting point for all, crucial for examin-
ing the impact of structured prompt training on their data analysis skills using Genera-
tive AI. This strategic participant selection was vital for maintaining a controlled study
environment and focusing on the specific research objectives.

3.6 Study Procedure

In this study, as shown in Fig. 2 participants were initially briefed on the impact of
Generative AI in data analysis and consented to ethical data collection and privacy
practices. A pre-test then assessed their existing knowledge, establishing a baseline for
subsequent phases. During the training phase, they engaged in a one-hour session on
structured prompt writing, essential for effective interaction with Generative AI tools
like OpenAI’s ChatGPT, and practiced crafting prompts through contextual and non-
contextual examples. In the task phase, they applied these skills over three hours, tackling
various data analysis tasks and refining their proficiency. Post-intervention, their skills
were reassessed to quantify the training’s effectiveness. Comprehensive data collection
included output file assessments of tasks, SUS survey, and semi-structured interviews,
providing amultidimensional understanding of the participants’ learning experience and
the influence of Generative AI tools on enhancing data analysis learning.
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Fig. 2. Study Flowchart: Explaining the Elements of Different Phases in the Study

4 Results and Discussion

4.1 Data Analysis

In response to RQ1, That is to measure the impact of prompt training on data analysis
skills. Initially, the homogeneity of variances among participants was verified using the
Levene Test applied to pre-test scores across the three cognitive levels of Bloom’s taxon-
omy—understanding, applying, and analyzing—as well as the total score. The Levene
Test results indicated no significant difference in variances, with P values greater than
0.05 across all categories, confirming homogeneity within the participant group (Lev-
ene’s Test values for Total Score Pre-Test= 0.15, P= 0.70). Following this assumption
check, a paired sample t-test was conducted to compare pre-and post-intervention test
scores. This test revealed a significant improvement in participants’ performance, par-
ticularly notable in the total score, where the test statistic was t(19)= 8.66, p< .00001,
effect size = 0.89, indicating substantial educational gains attributed to the structured
prompt training and Generative AI intervention. The detailed analysis of this result is
discussed in [25].

In response toRQ2,Which examines the role ofGenerativeAI and structuredprompt
training in promoting self-directed learning in data analysis education. The following
sources of data are analyzed to answer the RQ.

The System Usability Scale (SUS) Survey. It resulted in a mean score of 72.38 with a
standard deviation of 8.45, reflecting a generally positive reception towards the usability
of the Generative AI tool in data analysis learning. This positive perception underscores
the tool’s effectiveness and user-friendliness, contributing to a satisfactory learning
experience.

Task Completion Rate. An assessment of task output files further demonstrated that
students could perform tasks independently, a capability enhanced by structured prompt
training and the use of Generative AI. While 70% of students completed the initial
task (T1), the completion rates for more complex tasks (T2 at 55% and T3 at 45%)
indicate that although students could handle basic data analysis tasks independently, the
increasing complexity of subsequent tasks posedgreater challenges. This trendhighlights
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the critical role of foundational data analysis skills, acquired through prompt training,
in preparing students to tackle more advanced data analysis tasks using Generative AI,
thereby facilitating their independent learning progression.

Semi-structured Interview. Interviews were conducted with questions about their
interaction with AI tools and structured prompts such as “How do you feel writing
prompts affect the learning of programming? Can you share an experience where you
faced a challenge during the task, and how you handled it? and What’s different about
learning with the AI than other ways you’ve tried to learn?, etc.” data from these inter-
views was analyzed through a deductive coding approach, where three themes and sub-
themes were borrowed and adapted from the literature to code the data [10, 11]. These
themes were identified as significant patterns in the participants’ responses and were

Table 1. Decoded themes and participant responses from semi-structured interviews

Theme Sub-Theme Participant Statement

Empowerment Self-efficacy
Greater Confidence
Enhanced
decision-making

P3: “After the AI prompting session, I’ve realized that
programming is within my grasp, and I’m enthusiastic
to tackle more coding challenges”
P7: “Syntax explanation clarified programming
concepts for me and demonstrated the practicality of
the code, boosted my confidence in my coding”
P9: “I used to feel lost in programming, but now I feel
confident in solving such tasks”
P14: “Writing structured prompts forced me to think
in order and step-by-step, which helped me to instruct
ChatGPT effectively and make more informed
decisions through clear explanations
P6: It became easy to understand the reasons behind
errors and resolve them through ChatGPT”

Task-oriented Skill Improvement
Problem-Solving
Extrinsic motivation

P4: “Writing code to solve tasks helped me learn
programming concepts and how they are used in real
life, improved my coding skills”
P20: “Learning to write prompts correctly helped me
break down problems and piece together solutions
more effectively.”
P12: “Writing my first prompt was challenging, but
seeing the code work successfully boosted my
confidence to do more tasks”

Joy of Learning I want to learn
I want to Grow

P5: “Now, whenever I face a problem, I try tackling it
by writing different prompts. It feels like I’m playing a
game, exploring various strategies to find the best
solution”
P8: “Chatting with the AI is exciting because I learn
something new every time. Unlike textbooks, the AI
responds in seconds, making learning fast and fun”
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subsequently reviewed by experts who have programming experience, expertise in ana-
lyzing content generation throughGenerativeAI, and are experts in self-directed learning
research. Table 1 details these themes, reflecting the varied experiences and insights of
the participants, though this table is limited to participant’s responses.

Concluding the data analysis, we observed significant advancements in self-directed
learning outcomes through structured prompt engineering and Generative AI. Moving
into the discussion section, we explored the deeper implications of these findings.

4.2 Discussion

In response toRQ1,we observed significant quantitative improvements in how structured
prompt engineering with Generative AI enhances novice learners’ understanding of
programming and data analysis. First, the Levene Test confirmed a consistent baseline,
allowing for valid comparisons. At the same time, paired sample t-tests showed marked
advancements in understanding and applying programming concepts, as indicated by
significant effect sizes across Bloom’s taxonomy levels. Moreover, the positive System
Usability Scale (SUS) survey results underscore the tool’s user-friendliness, emphasizing
its role in reducing cognitive load and enhancing focus on concept application, thereby
supporting the study’s findings from a usability perspective.

From the analysis of the second research question (RQ2), the results show how struc-
tured prompt engineering, coupled with Generative AI, impacts self-directed learning
and task completion efficiencywithin data analysis education. The findings highlight that
structured prompts, particularly those crafted using the CLEAR framework and Gen-
erative AI, significantly enhance task completion rates, especially as task complexity
increases. This is consistent with the self-determination theory (SDT), which suggests
that autonomy is the essential component of self-directed learning [26].

High System Usability Scale (SUS) scores confirm the user-friendliness of these
tools, promoting sustained engagement and facilitating the transition from dependent
to independent learners. A positive perception of the usability of Generative AI with
structured prompts can motivate learners to engage in the material and enhance their
learning effectiveness, which is crucial for self-directed learning.

Qualitative data from interviews highlight the transformative impact of these tools
on learning dynamics. Learners reported feeling confident and believing that they can
handle programming anddata analysis tasks effectivelywith the help of generativeAI and
structured prompts. This reflects their ability to initiate and manage learning processes
independently, a sign of empowerment. Additionally, the clarity provided by structured
prompts aids learners in decomposing complex tasks into manageable parts, an essential
skill in self-directed learning that fosters autonomy and enhances cognitive engagement
in the process of solving tasks. Also, the joy of learning and motivation derived from
such an interactive and responsive learning tool underscore its effectiveness in fostering
an environment where learners are encouraged to explore, experiment, and learn at their
own pace, thus enhancing both self-directed learning and task completion efficiency in
data analysis education.
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5 Conclusion and Future Work

This paper presents the role of structured prompts conceptualized based on the CLEAR
framework and OpenAI strategies. The quantitative and qualitative findings together
demonstrate the effectiveness of Generative AI in enhancing understanding of program-
ming and data analysis concepts. Specifically, structured prompts have been instrumental
in guiding learners through complex problem-solving processes. This approach not only
improves task completion efficiency but also fosters a self-directed learning environ-
ment where students are empowered to explore, experiment, and discover independently,
leading to significant learning gains. However, the study acknowledges its limitations,
including the absence of log data analysis, which could provide deeper insights into the
behavioral patterns of high and low performers, and the relatively small sample size,
which limits the generalizability of the findings.

Future research could explore the long-term impacts of Generative AI and struc-
tured prompts through a longitudinal study, enhancing our understanding of self-directed
learning over time. Additionally, comparative studies could assess the effectiveness of
these tools across different groups with varying levels of access to technologies like
ChatGPT and structured prompt training. This would help to deepen our insight into
the role of Generative AI in learning, which will contribute to refining training methods
and improving learning theories to create learning experiences that are more engaging,
effective, and tailored to individual needs.
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Abstract. Designing of the function interface is one of the key skills
in programming. That requires feedback, which can be generated in the
necessary quantity only by an intelligent tutoring system. In this paper,
we propose a method of extracting function descriptions from inline com-
ments in open-source code and find noun phrases that describe the data
items passed to and returned from the function. We compare two popular
NLP tools for parsing sentences and two different similarity measures to
find the best-performing combination and develop sophisticated meth-
ods of filtering functions to increase the percentage of correctly marked
functions. We achieved correctly marking more than 80% of the automat-
ically selected functions, which significantly speeds up creating banks of
learning problems for intelligent tutoring systems in programming learn-
ing.

Keywords: Natural language processing · Learning problem
generation · Feedback generation · Introductory programming learning

1 Introduction

Demands for IT professionals and programmers have been growing in the last
few years because of the increasing usage of digital technologies in modern soci-
ety [17]. Learning programming is very difficult because programming requires
various knowledge and many different cognitive activities [39].

Modern programs can contain many thousands of lines of code. They are
difficult to develop, read, understand, and maintain. They also require the coop-
eration of teams of software developers to develop and maintain them. The chief
method of dealing with the complexity of modern software is decomposing it
[20] into smaller modules, which can be developed separately and then linked
together into a single system. The object-oriented paradigm [41] is the most
popular approach to program decomposition, which can be hard for novice pro-
gramming students because of the large number of new concepts [15] that should
be learned before writing the first program. The procedure-oriented approach is
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easier for beginners; it considers the program a set of procedures interacting with
each other in order to perform the program’s function. Both approaches require
defining interfaces of procedures, which can be called either functions or class
methods.

A procedure is a named part of the code that has a well-defined interface
consisting of input and output arguments and the return value, so it can be
accessed by other parts of the program. One of the central skills when learning
to design and implement complex programs is designing function interfaces so
that the data are passed to and from the function correctly and conveniently.
It often requires repeated exercise to master. One of the common exercises in
introductory programming courses is designing the interface of the procedure
to perform the required task. The first step in that exercise is extracting the
descriptions of data passed to and returned from the procedure from the natural-
language formulation of the procedure’s goal [24].

Such exercises can be used either for assessing the learners’ skills (summative
exercises) or for developing those skills, including self-study (formative exercises).
Formative assessment [28] is very important for the learning process if it is sup-
plied with appropriate feedback [23]. Face-to-face interaction between student
and teacher is an effective way to study, but it is limited because of teachers’ time
necessary to verify the students’ solutions and provide feedback. Many introduc-
tory programming courses suffer from a high teacher workload, which leaves little
time for teachers to provide individual feedback to their students [10]. Intelli-
gent tutoring systems (ITS) [2,19] can increase the performance of teachers by
providing automatic explanatory feedback when students make errors. ITS is
a program that simulates student-teacher interaction [9] providing immediate
feedback [26] and guidance on incorrect steps [2] while selecting the next learn-
ing problem according to the learner’s progress. The two key problems when
developing ITS are detecting semantic errors to provide meaningful explanatory
feedback and creating enough different exercises to maintain effective learning
for every kind of student.

In this paper, we propose a method for the automatic extraction of descrip-
tions of data items from a procedures’ descriptions that can be automatically
extracted from the program code because they are provided in a special for-
mat for the purposes of generating program documentation. This method allows
increasing the quantity (and so, precision) of explanatory error messages pro-
vided to the students and paves the way for automatic generation of procedure-
designing learning problems from existing source code.

2 Related Works

Many solutions were developed to check the correctness of program code. Static
code analyzers [18] are used to check the program code using special templates
and report typical errors and deficiencies. Formal verification methods [11] allow
to check the algorithm’s correctness based on its requirements. However, they
work well for experienced programmers; they are not designed to support novice
programmers who are still struggling with learning the basic concepts.
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Effective feedback belongs to the essential factors of student success in pro-
gramming courses [34]. However, feedback provided by human teachers and
tutors is limited by the specified class time and office time, while poorly-
performing students may need more feedback to succeed in the course. Addi-
tional feedback can be provided automatically by intelligent tutoring systems.

Many different ITS were developed for programming learning. In [29], the
authors discussed a tutor for learning Scratch using automated feedback in
the form of hints. In the tutor “AlgoTouch” [1], students create program codes
by dragging blocks with algorithmic primitives. “Dodona” [40] is a virtual co-
teacher for learning different areas of programming, including data science. It
is designed as a set of online courses with practical exercises. Contractor and
Rivero described a program that generates feedback using approximate graph
matching of abstract syntax trees of the correct (expected) program code and
the student’s program code [7].

“Ask-Elle” [13] is a tutor teaching writing functions in the Haskel language
based on the natural-language text describing the function goal. To create an
exercise in that tutor, the teacher should enter the description text and model
solutions for the task [12]. But the description’s text is not connected with other
task’s components. The function interface is predefined by the teacher. “CodeQ”
[21] is an online tutor for different areas of programming in Python and Prolog.
One of the topics in “CodeQ” is writing a code of function with the given goal.
The function description is not related to the task solution process. The student
has the possibility of getting a hint that was predefined by the teacher. But hints
related to the function interface do not provide students with opportunities to
understand the errors made and avoid them in the future.

Problets [4,14] and Solvelets [3] are a group of intelligent tutors for differ-
ent kinds of learning problems used in introductory programming courses. They
provide step-by-step feedback if the student takes a wrong action. The steps of
Problets and Solvelets correspond to different sub-tasks used in programming
practice. Those tutors allow reliable measurements of the students’ learning out-
comes [25].

Solvelets [3] introduced a task-solving step when the student should select
inputs and outputs of the algorithm in the natural-language algorithm descrip-
tion. The tutor gives hints to the student if they select a text fragment that
doesn’t describe the algorithm’s inputs or outputs. That feature relies on the
manually entered data in the problem formulation, which makes creating new
learning problems more labor-intensive. Also, the tutor provides only basic feed-
back on errors: it only discerns selecting too little (less than a word), too much
(more than necessary), and selecting a wrong phrase. In the last case, the tutor
always recommends the student “pick a noun”, even if the student selects a
noun that is not related to the algorithm’s input and output data, which can
be misleading. Also, Solvelets only support selecting one noun per data item,
which can be confusing if the algorithm interface contains two data items with
the same base noun (e.g., calculating a person’s age from the birthday date and
the current date).
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The same step of selecting function inputs and outputs is used in the intel-
ligent tutor for designing a function interface [24]. That tutor has a slightly
better system of feedback because it allows noun phrases (not just single nouns)
as descriptions of data items, and its basic feedback says, “The selected phrase
does not describe any data item”, which avoids misleading the student when a
noun that does not describe a data item is selected. However, that tutor also
requires manual labeling of parts of the function description, and it does not
provide detailed feedback to the student on errors.

In order to facilitate automatic learning-problem generation, it is necessary to
develop methods of labeling data items corresponding to the input and output
data in the function description. Various methods of Natural Language Pro-
cessing (NLP) [32] can be used to perform the task. The closest to the goals
of our study NLP problem is Named Entity Recognition (NER), which con-
cerns extracting named entities mentioned in a natural-language text [6]. NER
is often used to extract person names, places, and specific terms [5,16]. How-
ever, our problems are more complex than the problems solved by classical NER
approaches because data items are represented by common nouns (while most
of the named entities are proper nouns), and they belong to different appli-
cation fields depending on the features of the program from which the pool
of function-describing comments is drawn, so domain-specific techniques and
ontologies cannot be used.

3 Method of Identifying Data Items in Function
Description

Fig. 1. Function-documenting comment example

Many computer programs have inline comments documenting functions,
classes, and other program elements (see Fig. 1). Those comments are used to
automatically generate code documentation, which helps keep it updated when
the code changes. Comments documenting functions and class methods often
contain sections devoted to generally describing the function (which can be used
to generate a learning problem in function interface design) and separate descrip-
tions of function parameters and return values, which can be used to facilitate
identifying the parts of function descriptions naming data items. Using real-
world open-source code allows for the generation of realistic learning problems
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that do not look artificial [38], unlike the methods based on random generation.
Using real program code also allows generating more diverse learning problems
than template-based problem generation [36].

We propose a method of finding the phrases mentioning function parameters
in its description with the following steps:

1. Extraction of the function data (function description and parameter descrip-
tions) from an inline documentation comment;

2. Pre-filtering of extracted function descriptions;
3. Extraction of noun phrases from descriptions;
4. Matching parameters’ noun phrase to description noun phrases;
5. Post-filtering of marked function descriptions.

In the following text, we will use the term “parameter” for any unit of data passed
to or returned from the function, including function arguments and returned
value.

Extraction of Function Description and Parameter Descriptions. Inline
documentation comments have fixed patterns, which are necessary to generate
structured documents from them. Definitions of parameters and return values are
marked with special commands; the paragraph without commands is considered
the function description.

Pre-filtering of Extracted Function Descriptions. At this stage, incorrect
function descriptions are filtered out. Pre-filtering is performed based on the
following criteria:

– there are no non-punctuation symbols (e.g., %, $, *, etc.) in the comment
(those characters make parsers perform poorly);

– comment contains at least one parameter or return value.

Function descriptions often begin with noun phrases like “This function”,
“Helper method” and so on. Those noun phrases do not belong to the data
elements. If the first word in the function description is not a verb, we exclude
the first noun phrase before the verb from the function description. For example,
the function description “Helper method to add a setting item to a preset” will
be truncated to “add a setting item to a preset”.

Extraction of Noun Phrases from the Descriptions. A noun phrase [8]
is a phrase that has the grammatical function of a noun. Usually, noun phrases
describe objects, so data items that are passed to and returned from the function
are typically described using noun phrases. Our goal at that stage is to collect all
the noun phrases in the descriptions: given a function description and function
data descriptions, select all the noun phrases from the function description and
parameter descriptions.
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In this step, we build a syntax tree of the function description. Then we select
all nouns that are not compounds of other nouns. Then we select all direct and
indirect dependents of those nouns through relations: “nmod”, “amod”, “det”,
“compound”, and “case”. If a word is linked by the “case” relation directly to
the root noun, it is excluded to make the resulting sub-tree a noun phrase (e.g.,
the word “of” in the example shown in Fig. 2 which is directly related to the
root noun “user”). The resulting sub-trees are called “full noun phrases”.

Figure 2 shows an example of a sentence’s syntax tree. Full noun phrases for
that example are “the person’s unique identifier of the last registered user”, “the
last registered user”, and “the person”. As you can see, full noun phrases can be
nested.

Fig. 2. Syntax tree of a sentence

Matching Parameters’ Noun Phrases with Phrases of the Function
Description Based on Their Similarities. To match the parameters with
noun phrases in the function description, we propose selecting full noun phrases
in the function description with the highest similarity value for each parameter.
One noun phrase in the function description can describe more than one parame-
ter as is shown in Fig. 3 (where the box A shows noun phrases extracted from the
function description, and the box B shows noun phrases extracted from function
parameters), so we can “reuse” the noun phrases for different parameters: the
phrase “two points” describes two parameters, “first point” and “second point”.

Let’s call “main noun phrase” a part of the full noun phrase, which is a
noun phrase that is not related through the “nmod” link to other noun phrases.
Examples of main noun phrases are shown in Table 1.

A full noun phrase is considered a candidate for a parameter if the similarity
between the parameter and the main noun phrase of the full noun phrase is more
or equal than 0.5. To choose the best candidate, the similarity of the parameter
and the full noun phrase of each candidate are calculated. The candidate with
the maximal similarity becomes the parameter’s match if its similarity is more
or equal than 0.5.

The algorithm is shown in Algorithm 1. Full noun phrases from the function
description are denoted FGNP ; descriptions of parameters are denoted DE.
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Table 1. Examples of main nouns phrases

Full noun phrase Corresponding main noun phrase

the person’s unique
identifier of the last
registered user

unique identifier

the last registered user the last registered user

the person the person

Algorithm 1. Match similar phrases
matches = [ ] � For each parameter
for each: de ∈ DE do

candidates ← [ ] � Construct the list of candidate phrases for the parameter
for each: fdnp ∈ FDNP do

main np fdnp ← get main np(fdnp)
sim ← get similarity(de, main np fdnp)
if sim ≥ 0.5 then

candidates.append(fdnp)
end if

end for

if length(candidates) > 0 then � Find the most similar function description
noun phrase for each parameter

curr candidate ← candidates(0)
max score ← −1
for each: c ∈ candidates do

curr score ← get similarity(de, c)
if curr score > max score and curr score ≥ 0.5 then

curr candidate ← c
max score ← curr score

end if
end for

� Connect matched function description noun phrase to parameter description
if max score �= −1 then

matches.append(de, curr candidate)
end if

end if
end for

Post-filtering of Function Descriptions. At this stage, we aim to increase
the percentage of functions with correctly matched parameters by weeding out
dubious functions whose descriptions are likely to be matched incorrectly. We
keep the functions meeting the following criteria:

– at least one argument of the function and its return value are matched with
noun phrases in the function description;
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Fig. 3. Example of matching noun phrases from function description (A) to its param-
eters (B).

– if several parameters are matched to the same phrase in the function goal
description, they must be similar (similarity no less than 0.5) to each other.

4 Results

4.1 Test Sample

To test the developed method, we selected inline documentation comments from
well-known open-source projects: Moodle, GCC, Linux Kernel, and Doxygen. We
used the comments to free functions and static class methods because they have
much fewer “hidden parameters” passed through the class fields. We extracted
comments from 9 608 functions, which were used to select the best NLP tool for
sentence parsing and similarity metrics for matching descriptions.

4.2 Evaluation

NLP Tools Evaluation. We tried extracting full noun phrases from the func-
tion descriptions using two open-source NLP toolkits: “Stanza” and “spaCy”.
“Stanza” implements a Python interface to use Java Stanford CoreNLP soft-
ware [31], which uses a neural-network-based method called graph-based parsing.
“spaCy” is a Python package using a statistical model based on transition-based
parsing algorithms [27].

We considered true positives the full noun phrases that were found manually
and by the NLP tool, false positives the phrases that were found by the NLP
tool but were not confirmed manually, and false negatives the phrases that were
found manually but omitted by the NLP tool.

The metrics for each parser are shown in Table 2.

Similarity Calculation Methods Evaluation. We considered two methods
of calculating similarity between phrases: editing distance in the form of Lev-
enshtein distance (implemented in the Python package “thefuzz”) and semantic
similarity in the form of Vector Space Model “GloVe” [35] (implemented in the
Python package“Gensim” [33]). The Levenshtein distance between sequences of
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Table 2. Efficiency of the NLP tools

NLP tool Precision Recall F1-score

Stanza 0.941 0.961 0.951

spaCy 0.912 0.854 0.882

A and B is the minimum number of changes (inserts, deletes, or substitutions)
of one sequence element (usually, a character) in A to transform it into B [22].
The “Glove” Vector Space Model [30] combining features of global matrix fac-
torization and local context window methods and was trained on the data from
Wikipedia and Gigaword dataset. Similar words (for example, synonyms) have
a small distance from each other.

We measured the percentage of the functions for which all the parameters
were matched correctly because only those functions can be used to generate
learning problems without a teacher’s intervention. The results are shown in
Table 3. It can be seen that both filtering stages are crucial to improving the
method’s performance.

Table 3. Evaluation of similarity calculation methods. Nfunc - number of selected
functions, Pcorr - percentage of functions with correctly matched parameters.

Similarity
measure

Full filtration No pre-filtration No post-filtration

Nfunc Pcorr Nfunc Pcorr Nfunc Pcorr

Levenshtein
distance

127 87.62% 935 24.07% 5839 7.1%

“GloVe” Vector
Space Model

122 63.42% 1061 19.4% 5839 4.9%

5 Discussion

When comparing the NLP tools, the most important metric for us was recall
because a wrongly selected phrase is not likely to be matched to any param-
eter; omitting a valid phrase is a worse error. According to Table 2, “Stanza”
performed the best for all metrics, so we consider it more suitable for extracting
noun phrases from sentences that are typical in function description comments.

Out of similarity metrics, the Levenshtein distance gave significantly better
results than the Vector Space Model “Glove”. This can be caused by the semantic
similarity metrics using the vector space being too broad, considering different
terms used in the same function definition are very close because they belong
to the same task performed by the function. For example, the similarity of the
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phrases a = “an image with new color” and b = “old color of an image” describing
two different parameters is sim(a, b) = 0.96 when the Vector Space Model is used
and sim(a, b) = 0.62 when the Levenshtein distance is used. The Levenshtein
distance performed better in spite of its obvious disadvantages. The percentage
of correctly identified functions (87.62%) is good for giving a teacher prepared
problem formulations they can verify and fix if necessary, but it is too low for fully
automatic generation [37]. More work on defining a better similarity measure is
needed to fully automate learning problem generation in that field.

Our method chose as suitable for learning-problem generations 127 comments
out of 9 608. While the rate is only about 1.32%, it is more than enough for
large-scale problem generation because of the vast amount of raw data: there
are more than 300 million repositories on GitHub alone, and their number is
growing. Using the available open-source code, it is possible to generate any
practically desired number of learning problems.

Still, the low number of generated learning problems is the biggest limitation
of the proposed method. Our aim was to maximize precision so that we can lower
the amount of manual work involved in verifying and fixing generated learning
problems. Increasing recall will be a challenge for further development of the
proposed method. One of the challenges we face in developing that method is
using generative artificial intelligence tools to preprocess function comments to
increase their quality and so suitability both for machine processing and usage
in generating learning problems.

Fig. 4. Interface for verifying and correcting mark up of data elements. The noun
phrases for the found data elements are shown in the red and blue rectangles; the noun
phrase that is not matched to a data element is shown in the gray rectangle. (Color
figure online)
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To facilitate generating learning problems, we developed a user interface that
allows quick verification and correction of the marked function descriptions.
Figure 4 shows an example of marked function descriptions with noun phrases
highlighted by color rectangles (each element is given its own color); function
data elements are shown below. Each data element has two rectangles: the bigger
one shows the full noun phrase (i.e., the maximal phrase that can be selected by
students to give a correct answer); the smaller rectangle shows the main noun
phrase (the minimal phrase that should be selected by students to give a correct
answer). Rectangle borders can be adjusted to correct the automatic markup.
Noun phrases that were not connected to a data element are shown in a gray
rectangle. The interface allows teachers to verify and correct a function descrip-
tion in less than 20 s, which is very fast compared to manual marking. It is then
saved in the RDF format to be included in the formal problem definition for the
intelligent tutor in developing function interfaces [24].

6 Conclusion

Designing function interfaces is an important skill in programming learning. It
requires repeated exercise to master. Learning that skill starts with identify-
ing data items passed to and from the function in the natural-language text
describing what the function should do.

The current solutions [3,24] require manual marking of the function descrip-
tion and can give confusing feedback. In this paper, we propose a method of
automatic marking of function descriptions extracted from inline documenting
comments in the program code to identify the noun phrases describing function
parameters. We measured the performance of two NLP tools for parsing sen-
tences and two methods of calculating string similarity and found that the best
results (87.62% of functions where all the parameters were identified correctly)
can be achieved by using the “Stanza” package and the Levenshtein editing
distance.

Those results allow building a tool to support learning-problem generation,
which extracts function descriptions from open-source code and gives the teacher
pre-marked descriptions they can correct and use in their learning problems.
They also help avoid confusing feedback when the tutor tells the learner to
select a noun when a non-relevant noun is selected.

Full automation of learning-problem generation requires better precision. We
plan to develop a special semantic similarity measure better suited to discern
parameters of the same function, which can be based on vector embeddings
and/or neural networks.
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10. Figueiredo, J., Garćıa-Peñalvo, F.J.: Intelligent tutoring systems approach to intro-
ductory programming courses. In: Eighth International Conference on Technologi-
cal Ecosystems for Enhancing Multiculturality, TEEM 2020, pp. 34–39. Association
for Computing Machinery, New York (2021). https://doi.org/10.1145/3434780.
3436614
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Abstract. In this paper we propose a method to classify the students’
textual descriptions of algorithms. This work is based on a wealth of data
(programming tasks, related algorithm descriptions, and Peer Assess-
ment data), coming from 6 years of use of the system Q2A, in a “Fun-
damentals of Computer Programming” course, given at first year in our
university’s Computer Science curriculum. The descriptions are submit-
ted, as part of the answer to a computer programming task, through
Q2A, and are subject to (formative) Peer Assessment. The proposed
classification method aims to support the teacher on the analysis of the
quite numerous students’ descriptions, in ours as well as in other similar
systems. We 1) process the students’ submissions, by topic automated
extraction (BERTopic) and by separate Large Language Models, 2) com-
pute their degree of suitability as “algorithm description”, in a scale from
BAD to GOOD, and 3) compare the obtained classification with those
coming from the teacher’s direct assessment (expert: one of the authors),
and from the Peer Assessment. The automated classification does cor-
relate with both the expert classification and the grades given by the
peers to the “clarity” of the descriptions. This result is encouraging in
view of the production of a Q2A subsystem allowing the teacher to anal-
yse the students’ submissions guided by an automated classification, and
ultimately support fully automated grading.

Keywords: Large Language Models · LLM-based Text Similarity ·
Peer Assessment · Automated Assessment

1 Introduction

Computer Programming, as a study discipline in Education, has been growing
in the last decade, well beyond its obvious need and placement into Computer
Science and Engineering courses [20,21]. Acquiring programming skills, at any
level and in any educational context, can be a hard task, as it implies, in the
first place, extensive practice and training, by the development of numerous pro-
gramming exercises [4]. Such practical training is a very useful learning activity,
supporting the development and sharpening of programming skills, and often a
good part of it is accomplished under the form of homework [17].
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While the assessment of homework can provide a wealth of data about the
learner’s proficiency, and/or her/his misconceptions, it can be challenging for
the teacher, in particular in a large class, for sheer homework numbers, and/or
for time constraints. Automated Assessment [16] can then be a great asset in a
homework management system: it can provide the student with timely feedback
and useful information about the submitted task, also entailing suggestions on
how to make it better [5,6,18]. In our Q2A-II system the homework are tested,
with a black-box strategy, and grades are given to the submissions according
to the number of tests passed. The system also enriches the automated assess-
ment with feedback related to the structure, style, and complexity of the code:
feedback that can help the learners to improve and re-submit their solutions.

On the other hand, prior to start coding, the student should make her/his
mind about the Algorithm to implement. The ability to define an algorithm
is very important in computer science and engineering courses, and it’s a very
important learning objective in several other fields (e.g. medicine, natural sci-
ences, social sciences, music, architecture, and more) [11,12,14].

In our Python programming course, first year in the Computer Science Bache-
lor, we use the Q2A-II system [15] (Q2A henceforth). Q2A is our question/answer
forum, allowing students to help each other while working on the 4 homework
tasks to be submitted before of the final exam.

The forum has been extended with some plugins to handle submission, auto-
mated testing of the submitted programs, gamification features (badges, points
for participation, leader-board), and a formative peer-assessment (PA) phase.
In it, a student submits the description of the algorithm that is implemented by
her/his program. This helps focus on the algorithmic analysis of the student’s
task. In the PA phase, then, the students are to grade 3 peers’ algorithm descrip-
tions and provide three grades: Clarity of exposition, Correctness, and Efficiency
of the algorithm. They are also requested to give suggestions on how to improve
the algorithm. Unclear algorithm descriptions would make suggestions harder, or
even impossible, to give, so the clarity of the algorithm exposition is important.
Eventually, the peer receiving a suggestion can grade its perceived usefulness,
and is given some more days to submit an improved version of the program.

In this paper, our main goal is to help assess the quality of the algorithm
descriptions and to evaluate how the peers’ grades relate with such quality. We
have first addressed this problem in a very recent conference paper [19], using a
modest two-values scale (BAD/GOOD). BAD meant basically “no algorithmic
description” (whatever text was in it), so we obtained a partition of the sub-
missions in two classes, where the second class was the one with descriptions
bearing at least minimal traces of algorithmic contents.

Here we extend the work using a more powerful Large Language Model
(LLM), and a more finely grained classification scale. We also produce a pre-
liminary validation of the classification method, based on the teacher labeling
of one year worth of data (about 1600 submissions). (The teacher is one of the
authors). The whole dataset we used comprises the submissions from the last
six years of Q2A usage, i.e. 10K submissions and 36K grades and suggestions.
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The automated classification is produced by first extracting Topic clusters,
through BERTopic: each cluster contains a subset of the submissions, and the
clusterization is based on the common presence, in such submissions, of the topic
keywords. Then the clusters are assigned a label, using the grading scale that was
used in the manual classification of 2019/20 dataset. To do this, we have devised
a measure of clarity of the algorithm description, based on a comparison with the
text of the task description. So the labelling performed by the system is based
on the distance between the descriptions of task and single algorithm. We think
that cheating, in this setting, can be easily contrasted, while such a measure
could provide an assessment of how the algorithm description can be available
to be evaluated by the peers (and by the teacher). Eventually, we compare the
automated labelling (classification) with the teacher’s labelling (limited to year
2019/20) and with the clarity assessment given in the PA.

In both cases, the automated classification correlate with the other classifi-
cations.

The rationale of this research is both based on our interest in discovering
hidden structure in the students’ behaviour, and in our desire to improve our
teaching (and the Q2A system) by leveraging the vast amount of data collected.
The final goal being to build a good model of the student and of her behaviour
when cooperating with her peers, and from that, to be able to help students that
find difficulties in their study activity.

1.1 Research Questions

Large Language Models (LLM) recently have been able to do sophisticated com-
parisons between texts “meanings”, and to produce texts imitating the human
language with a very high level of detail and complexity. This implies that the
internal representation used by such models must be precise enough to represent
(in some hidden way) the nuances of human languages. This gave us the intuition
that LLMs could be used to understand if an algorithm description is actually
explaining an algorithm, suitable for the task at hand, and to what degree.

RQ1: Can a LLM be used to classify the algorithm descriptions part of the home-
work dataset, and so predict the teacher’s labelling of the algorithm?
We’ll see that this is possible, through automated topic extraction, and the
use of a measure expressing how similar is the algorithm description to the
related homework task, as provided by the teacher.
The conjecture is in that the more the algorithm is properly described, the
better any kind of assessment will have a chance to be. Notice that here we are
not dealing with the correctness of the described algorithm, rather with the
possibility to say something about it, based on the description, which would
be potentially useful to the student author, whether it came from the teacher
or from the peers. To validate this, we compared the automated labelling with
the teacher’s one (2019/20 dataset) and with the clarity assessments given by
the peers.
About the last assessment (clarity) naturally a further RQ arose:
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RQ2: Is there a correlation between the similarity to the task and the peers’
grades (clarity)?
In fact, it is interesting to see how the grades given by the peers (about how
clearly the algorithm is described) align with the automated evaluation of
the algorithm description’s quality. This can also shed some light about the
student’s ability to assess, which can be useful, in turn, for student modelling.

2 Related Work

Automated grading of programming tasks in education has been studied for a
long time [9], to provide the teacher with needed help, as well to assist learners
with prompt feedback during their learning activities. Teachers need support
especially when handling high number of students, or just when there are many
programming tasks during the course. Prompt feedback, on the other hand, can
be crucial in all the activities developing programming capabilities and compu-
tational skills, of which “algorithmic skills” are an important part, as mentioned
in the introduction [10,16].

Automated analysis of programming tasks is performed to determine the cor-
rectness of the submitted solution, and its efficiency. Sometimes also the propri-
ety of the implemented algorithm is considered. In some systems, Static Analysis
is applied to provide feedback on the syntactic and static-semantic aspects of
the program, without actually running the program [2,13,23]. In other systems
Dynamic Analysis of the program is performed, aiming to measure the success
based on tests, carefully defined to allow catching significant behaviors expected,
and significant logical errors in the program [5,6,18]. A less frequent approach
combines the two above mentioned types of analysis, such as in [22]

Lots of work has been done about the use of PA in courses of Basics of
Programming (in Higher education and in other educational settings). How-
ever, less literature is available about how PA is connected to the evaluation
and development of Higher Order Thinking in general, or Critical Thinking, or
Computational capabilities, or algorithmic skills. An experiment analysed the
use of PA in the framework of a First Year University course, where the peers
were requested to assess a submission according to three criteria, with quality of
description and correctness of the algorithm among them [1]. In [3] PA is studied
as a fruitful method to “help students and teachers evaluate algorithm problem-
solving skills in mathematics” (arithmetic, algebra, statistics, and geometry).
Other works are not directly focused on algorithmic skills, while they propose
the application of PA to the wider range of Higher Order Skills. In [8] higher
order skills range from transfer of knowledge and skills, to critical thinking and
problem solving, and it is discussed how “Peer Assessment is a method that is
extremely appropriate ... [to] ... help develop the students’ abilities” mentioned
above. In [24] a critical synthesis of the research on online PA for Higher Order
Thinking skills is presented. According to these authors, online PA seems to have
better effects on “convergent thinking” learners (guided by logic and respectful
of given criteria) than on “divergent thinking” ones (more creative and possi-
bly needing own-developed assessing criteria). In Q2A-II we are not explicitly
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working on this side of the PA usefulness, while, on the other hand, we leave
a very free hand to the peers in their assessment of the algorithms and related
suggestions.

3 Methods

As we already showed in [19], hierarchical clustering of topics extracted from
documents allows us to automatically distinguish between non-algorithms and
algorithms.

To summarize, we first did topic extraction by using the BERTopic library [7]
on the documents and their embeddings retrieved with the OpenAI API. In
particular, BERTopic does the following steps:

– embeddings extraction from text with the selected LLM model
– dimensionality reduction with the UMAP algorithm
– clustering of the embeddings with the HDBSCAN algorithm
– building a topic representation with the most important words representing

the topic with the CountVectorizer and the c-TF-IDF (cluster based TF IDF)
– the topic representation is refined by selecting the most important keywords

with a KeyBERT inspired algorithm
– the topics found are automatically reduced by joining similar topics

Notice that in the following we call OUTLIERS the (reasonably small) subset
of documents that are not placed by BERTopic in any topic.

Once the topics/clusters have been produced, we obtained the hierarchy of
topics in Fig. 1, by repeatedly merging pairs of most similar topics/clusters.
This automatically produces the hierarchy, with the two topmost categories that
distinguish the two most dissimilar groups of documents (in our case, algorithms
vs. non-algorithms).

To obtain more precise text similarity results than in the earlier paper, where
we were using the text-embedding-ada-002 model from OpenAI (named ADA
from now on), we have processed our texts through the newer OpenAI LLM
model text-embedding-3-large (named LARGE in the following). This model
accepts documents with a context of 8191 tokens as in the ADA model, which
is sufficient for the submitted algorithms and suggestions. The LARGE model
produces embeddings with 3072 dimensions (twice as much as the ADA model),
which should produce better precision in computing text similarity and clustering
the topics.

Using the newest model has been especially easy, as one had just to select
a different model while using the OpenAI API to retrieve the embeddings of a
document.

4 Results

We started with the initial automatic classification of algorithms into
BAD/GOOD/OUTLIER as explained above. Then we asked ourselves if the
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Fig. 1. Hierarchical clustering of topics automatically distinguishes non-algorithms
(bottom group) from algorithms (top group). ADA (left) and LARGE (right) mod-
els.

task description given by the teacher could be used as a reference document to
be compared with the algorithms, given the fact that it contained the terminol-
ogy and the description of the specific homework task.

When we analyse the similarity of algorithms to the task description given
by the teachers, we find that non-algorithms (BAD) and algorithms (GOOD)
show a distribution with two well separated peaks (see Fig. 2). Similarly, the
OUTLIERS show a two-peaks distribution.

Fig. 2. Distribution of documents w.r.t. their similarity to the task description. ADA
and LARGE models.

This suggests that the similarity of the algorithm to the task could be used
to automatically classify the submitted algorithms.

To understand if the similarity is really connected to the grade a teacher
could give to the algorithms, we have manually classified one year of submissions
(a.y. 2019–2020, circa 1600 over a total of 10K) with a finer set of labels than
the previous BAD/GOOD. The labels are ordered from the lowest grade to
the highest: BAD (non-algorithms), LIMBAD, LIMITED, LIMPASS, PASSLIM,
PASS, PASSGOOD, GOOD. In the following figures, the columns “GRADES”
will refer to such teacher’s assigned labels/grades.

When we compute the average similarity of each same-labelled group, and
we compare it with the topics extracted and the earlier automatic BAD/GOOD
classification, we obtain for the ADA model the distribution shown in Fig. 3
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Fig. 3. Average similarity for each topic and label. ADA model. Here and in the fol-
lowing figures, we use a red-yellow-green colour scale to highlight the worst-best values.

From the figure, it is clear that automatically classified BAD topics corre-
spond to BAD and LIMBAD, the lowest teacher grades. A small subset of the
automatically classified GOOD topics falls also in these lowest grades, possi-
bly corresponding to a few algorithms misclassified by the clusterization step.
Almost all outliers fall in the BAD grade (in fact, we manually placed all the
outliers in the BAD group in our earlier work).

We compute precision, recall and F1 values for the automatic classification
w.r.t. a binary classification obtained by partitioning the 8 teacher labels either
in a 2–6 split or in a 3–5 split. We compare these with the same results obtained
when using the LARGE model.

Table 1. Precision, recall and F1 of the automatic classification w.r.t. the teacher
labels over the 2019–20 academic year data.

Split ADA model LARGE model

2–6 3–5 2–6 3–5

Precision 95.0% 77.4% 96.8% 77.7%

Recall 100.0% 100.0% 100.0% 100.0%

F1 97.4% 87.2% 98.4% 87.5%

Accuracy 95.1% 77.9% 97.0% 78.9%

Specificity 33.3% 10.0% 63.9% 20.3%

Sensitivity 100.0% 100.0% 100.0% 100.0%

Outliers 0.81% 11.48%

In table 1 we show that a 2–6 split of the 8 labels, when used with the LARGE
model, produces the best values, but the number of outliers is 14 times higher
than with the ADA model. Therefore, to use the LARGE model, we must find
a way to assign the outliers into topics.
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From Fig. 4, which shows the similarities for the LARGE model, we see, in
fact, that the OUTLIERS are distributed over the whole set of teacher labels.
We notice also that the average similarity to task description of each label group
increases together with the label grades.

This suggests that using a threshold-based classification strategy to partition
outliers w.r.t. their similarity to the task, we could improve the automatic topic-
based classification for the LARGE model.

Fig. 4. Average similarity for each topic and label. LARGE model.

We also wanted to understand if different homework had radically differ-
ent similarity behaviour. In Fig. 5 we show the average similarity between each
labelled group of documents and the homework text, for both ADA and LARGE
models. The tables show that, with both models, the lowest grades have lower
similarity than the remaining higher labels. This could be used to build an
automatic threshold-based classifier. If we look more in detail to the different
behaviour of the ADA and LARGE model we notice that the former reaches a
plateau, and thus can at most be used for a two-label classification, and cannot
be used neither to build a multi-threshold classification strategy, nor to find a
linear correlation useful for automatic assessment. The LARGE model instead
shows a steady increase in average similarity in concert with the teacher labels.
This could be used either to define a multi-threshold assessment strategy (reduc-
ing the 8 labels to 3 or 4 levels) or to find a formula interpolating the similarity
w.r.t. the labels.

With respect to the homework, we notice that in both models the first, easier,
homework shows higher similarity to the task description than the others. This
is expected, as the exercise text is shorter and simpler than the other ones. This
means also that an automatic assessment model should consider other factors
beside the similarity (e.g. the length of the task description or the homework
ID).

Algorithms have also been graded by peer students during the peer-
assessment phase.
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Fig. 5. Topic similarity to task description vs the 4 homeworks. ADA and LARGE
models.

When we look for correlation between grades and similarity, we find no cor-
relation, because of the variability of grades given by peers to algorithms.

This variability could be related to the fact that peer-assessment is optional,
it’s not graded, and we suppose the students participate both to get suggestions
from others and to have more time to work on their programs. Then they pos-
sibly care more about the algorithms and the suggestions than the grades they
give/receive to peer’s algorithms and suggestions.

If we first extract from the set of submissions the most common topics by
using the BERTopic library [7], we find that topics containing similar documents
show average similarity and average peers’ grade which increase monotonically.

Figure 6 shows how, for each topic extracted and depending on the model,
the Clarity grade from peers is related to the average similarity of the topic
documents. The size of the dots represents the number of documents belonging
to the topic, while the colour shows the automatic classification and the outliers.

If we compute the correlation and plot the interpolating line, we get the
following Fig. 7.

As we can see, with both models, there is a high correlation between aver-
age topic clarity and average topic similarity (R2 is 0.81 for ADA and 0.79 for
LARGE topics).

If we group documents w.r.t. similarity (with 0.01 granularity) the Clarity
grades behave like in Fig. 8.

As we can see, the document grades (averaged over each 0.01 similarity bin)
and the similarities correlate better by using the LARGE model (Pearson =
0.57, R2 = 0.32) than by using the ADA model (Pearson = 0.22, R2 = 0.05).
The outliers are spread over the whole range and behave like the other automat-
ically classified documents. This could help us to classify them properly.
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Fig. 6. Topic average similarity to the task description vs topic average grade. Colours
show the automatic classification (GOOD/BAD/OUTLIERS). Dot size shows the
topic’s number of documents.

Fig. 7. Correlation between topic average similarity to the task description vs topic
average clarity grade. Colours show the automatic classification.

Fig. 8. Average grade vs average similarity, for each 0.01 similarity. Colours show the
automatic classification. Dot size shows the number of documents with same similarity.
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We notice that there are a few documents with very high similarity but
with very low Clarity grade. These are wrongly submitted algorithms where the
student selected the wrong file. Notice that an automatic assessment based on
text similarity to the task description is prone to cheating, when the student
just uploads the task description. This type of cheating can be easily detected
by considering all documents with similarity above a certain threshold to be
a wrong file. If we remove the few documents with very low and very high
similarity (above 0.95 and below 0.50 for ADA, and above 0.85 and below 0.1
for LARGE) we get better correlations (Pearson = 0.78, R2 = 0.60 for ADA
and Pearson = 0.70, R2 = 0.48 for LARGE). This suggests adopting a 3-phases
assessment strategy:

– first, we compute the similarity of the algorithm to the task description
– then we classify those having similarity below a certain threshold as BAD

(non-algorithms) and the ones above a certain threshold as WRONG (wrong
file submitted, e.g. the program text, which contains the task description)

– finally, we compute the Clarity grade from the similarity, using the interpo-
lated formula obtained from the data above.

In the next peer-assessment step, after the student has graded her peers’
algorithms, we can use the above interpolation to understand if the grades given
are coherent with the algorithm quality and give immediate feedback to the
student on the grades.

We conclude, to answer RQ2, that just by computing the average topic sim-
ilarity and by classifying a new document into the corresponding topic, we can
predict the Clarity grade of the document and give immediate feedback to the
student even before the next phase of the peer-assessment (grading) takes place.

Moreover, by using the similarity, the outliers could be assigned to the correct
grade.

When we compute the correlation between teacher grades and average sim-
ilarity, we get Pearson = 0.62 for the ADA model and Pearson = 0.83 for the
LARGE model. This shows that the LARGE model produces similarities that
correlate very well to the teacher grades, better than to the peers’ grades (which
is expected). This answers RQ1 positively.

5 Conclusions and Future Work

We have shown that Large Language Models can be used to analyse algorithm
descriptions and compare them to the task description given. Such text similarity
correlates well both with the grades given by the teacher (RQ1) and with the
grades given by the students (RQ2) (but in this case, first the texts must be
clustered into similar topics to reduce grading errors).

The approach, similarly to other distant reading techniques, will be applied
to obtain a multi-class classification of the algorithms to be used for automatic
assessment. Automatic assessment will be helpful:



LLM-Based Analysis of Algorithm Descriptions Quality 269

– to give immediate feedback to the students submitting the algorithms, and
motivate them to work better

– to check if the grades given by peers to algorithms are correct, and give
feedback to the peer if needed

– to build a teacher-oriented dashboard showing the state of the class w.r.t. the
peer assessment phases

– to automatically suggest remedial activities with tutors for students strug-
gling with the homework assigned

Notice that the topic extraction phase could be enhanced by starting with
an initial set of example documents for each desired topic classification grade
(BAD/INSUFFICIENT/SUFFICIENT/GOOD), and then use BERTopic to
clusterize, when possible, the documents nearest to the examples. The example
“seed topics” documents could either be extracted from the available dataset, or
be written by the teacher as examples of how s/he would like an algorithm to
be described, with different levels of detail.

Notice that the described approach to algorithm classification based on doc-
ument similarity and topic extraction could be fooled by producing algorithm
descriptions through ChatGPT or similar AI systems, or by submitting docu-
ments obtained from the task description and some rephrasing. Some of these
tricks could be detected by considering as suspect all documents above a given
similarity threshold or by preparing a seed topic containing several transformed
versions of the task description (e.g. by sorting or scrambling the task description
words or by asking ChatGPT to rephrase it) and use it for the topic extraction.
This calls for some more research on the mitigation approaches.

Now we have the bases to analyse the remaining steps of our formative peer
assessment, i.e. the suggestions given to peers and the final feedback given to the
suggestions. Our future goals are: a) understanding what types of suggestions
are given, and b) what kind of feedback grades are assigned to the suggestions,
depending on the type of algorithm submitted and the initial steps of the peer
assessment.
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Abstract. Online higher education offers great learning flexibility but demands
learners’ high self-regulated learning (SRL) skills, especially in self-paced and
asynchronous online learning. The lack of SRL skills in many learners often
leads to poor academic outcomes, underscoring the need for SRL support. Our
study introduces CAP (Confidence-based Adaptive Practicing), a model of adap-
tive practicing designed to enhance SRL in STEM disciplines. CAP incorporates
knowledge tracing and question sequencing as two core functions. Unlike tradi-
tional adaptive learning systems that rely solely on machine control, CAP inte-
grates learner confidence feedback and learner control in its rule-based intuitive
algorithms. To avert the subjectivities of human judgement on learner confidence,
CAP employs Thompson Sampling machine learning to refine the algorithms for
adaptive accuracy and efficiency. This innovative AI-learner shared control app-
roach has garnered positive feedback from field experts, highlighting its potential
effectiveness in facilitating SRL.

Keywords: Self-regulated Learning · Adaptive Practicing · Confidence-based
Adaptive Practicing · Knowledge Tracing · Question Sequencing ·
Wheel-spinning

1 Introduction

Online education has become an important educational paradigm in higher education.
Self-paced online learning (SPOL) provides even more flexibility because learners can
study anywhere and anytime and follow their own study paces. Yet, SPOL faces some
inherent challenges due to reduced synchronous interaction when learners study inde-
pendently and asynchronously [1]. One challenge is that it demands high self-regulated
learning (SRL) skills in learners to self-monitor their learning progress, evaluate their
knowledge proficiency, identify learning weaknesses, and regulate learning efforts for
remediation. [2–4]. Previous research has identified a significant positive relationship
between SRL strategies and online academic success [3, 5, 6]. However, not every
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learner has adequate SRL skills. Learners are generally inaccurate when monitoring
their learning without additional instruction [7]. Also, in the context of higher edu-
cation, researchers found that instructors tend to focus on course contents, providing
limited opportunities for scaffolding SRL [8, 9]. Hence, it is imperative to provide learn-
ers with a means to facilitate their SRL in self-paced online higher education. Also,
learners need to consolidate the interrelated concepts and skills covered across units or
a whole course to prepare effectively for exams. In some cases, learners may need to
detect the root cause of the academic difficulties they experience, such as struggling with
an assignment. [1] argue that adaptive practicing could be an effective tool to meet such
needs.

Adaptive practicing provides learners with exercises for consolidating knowledge
during the post-learning stage. It not only assesses a learner’s knowledge level but also
includes scaffolding opportunities through hints, instructive feedback, and remediation
materials. Adaptive practicing can be accomplished with computed algorithms [10] for
two core functions: knowledge tracing and question sequencing. Knowledge tracing esti-
mates and tracks learners’ knowledge proficiency based on their responses to questions.
Question sequencing determines an optimal order of the exercise questions based on the
knowledge tracing results for maximum learning gain each time.

One issue with previous knowledge tracing models is that they mainly rely on the
answer correctness of assessment questions [11, 12]. As [12] pointed out, answer correct-
ness alonemay not tell whether an exercise is effective, but with certain side information,
it could. [13] suggested that humans may have relevant information to which adaptive
learning systems are likely blind. [3] included judgments of learning and feelings of
knowing in his SRL model. When taking a multiple-choice question, learners can mark
which answers they believe are correctwhile also indicating howconfident or certain they
feel about their responses [14]. This approach is called confidence-based assessment.

Another limitation of previous research on adaptive learning systems is that instruc-
tional sequencing usually assumes exclusive machine control and seldom considers
learner control. According to self-determination theory [15], learner control can enhance
learning motivation by strengthening the human need for autonomy.

Thus, considering learner confidence feedback and learner control in the adaptive
practicing model could promote learning engagement and reflection and potentially
increase the model’s efficiency. However, to our knowledge, studies have not sufficiently
investigated how learners’ confidence feedback and learner control are factored into an
adaptive practicing model design. As [16] pointed out in a review paper, AI agents could
take learner decisions and judgements as inputs to consider during decision-making, but
such a form of shared control has not been considered in the context of instructional
sequencing.

Therefore, to fill this research gap, our study explores how learner confidence feed-
back and learner control can be considered in adaptive practicing for knowledge tracing
and question sequencing. Given the potential of such anAI-learner shared control model,
wewill answer the following research question in this paper:Howcan learner confidence
feedback and learner control improve the efficiency of the AI-based adaptive practicing
model?
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2 Related Work

Currently, studies have explored some human-AI collaboration approaches in adaptive
learning. The term “human-AI collaboration” stresses that humans and AI are partners
in achieving the overall goal, and each party contributes according to its strengths and
weaknesses [17]. The general ideas of learner control have been extensively explored in
the field of education and have formed one of the foundations of self-regulated learning
[18]. In the context of online learning system design, learner control refers to certain
learning process features, such as control over the path, sequence, flow, etc. [19]. A
literature analysis by [19] shows that learner control over time, pace, navigation and
design tends to increase learning outcomes.

Some studies have considered how to keep humans in the loop of control in the field
of AI for education. [17] summarized four approaches of AI-learner shared control for
adaptive content selection. One approach is through the editable learner model [20].
In Weber and Brusilovsky’s ELM-ART system, the AI determines the state of learner
knowledge and displays it to the learner, while the learner has a chance to correct obvious
errors. Another approach is called ranking-based human-AI collaboration [21]. In this
case, AI does the work of careful selection and ranking, but the user has the final say in
selecting the most relevant content item. A third approach is adaptive navigation support
[22]. In this case, AI still works in the background to decide the best links to appropriate
content, but AI advice is provided less directly and the final control is left in learners’
hands. Those approaches show some possibilities of how AI-learner shared control can
be realized in adaptive learning. However, as [17] pointed out, content selection in most
cases is done by AI agents alone. At the same time, learners are only involved at the
beginning for learner model adjustment or at the end for selecting content from what AI
agents recommend.

A couple of approaches are adopted to enable learner control during the decision-
making process. For example, the system can allow the user to choose one of the available
content selection algorithms [23] or let the learner control some parameters of the rec-
ommendation process [24]. However, those approaches require extensive knowledge of
learners in computing algorithms and add extraneous cognitive load for learning.

3 Our Approach to an AI-Learner Shared Control Model Design

To answer the research questions, we first determine what learner confidence feedback
and learner control actions should be considered in the adaptive practicing model. Then,
we describe the theories that support our model design.

3.1 Confidence-Based Assessment

Traditional knowledge assessments that use multiple-choice questions only report right
or wrong answers. [25] found evidence of the obvious, that when learners are given a
selection of answers for a problem, they still have a chance to select the correct answer
even if they don’t know how to solve it. Confidence-based assessment techniques inte-
grate the selection of multiple-choice answers with the learner’s self-perceived level of
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certainty to eliminate guesswork and offer greater efficiency in managing the remedia-
tion process [14, 25]. A scale with three confidence levels (low, medium and high) has
been used [26] for self-perceived certainty. Inspired by this confidence-based assessment
technique, we propose to collect learners’ feedback on confidence in answering exercise
questions in the adaptive practicing model. We argue that this can improve the model
efficiency by eliminating the guesswork or slipping noise in the data.

3.2 Learner Confidence Feedback and Learner Control Considered

The idea of increasing interaction between human and machine learning algorithms
is to make machine learning more accurate or to obtain the desired accuracy faster
through learning with humans [27]. Inspired by the confidence-based assessment, we
argue that answer responses combined with learners’ feelings about their mastery levels
(e.g., confidence or difficulty rating) could make knowledge tracing more efficient. For
example, if learners skip a question and indicate it is too easy, or answer it correctly and
indicates high confidence, they likely have mastered the knowledge. This could be an
algorithmic advantage compared to the traditional knowledge tracing models, such as
the Bayesian Knowledge Tracing model, which needs a large number of questions to
fit the guessing and slipping parameters. Therefore, the following learner feedback and
learner control actions are considered in our model.

a. For learner feedback, ourmodel considers learners’ confidence or certainty about their
knowledge. A Likert question with three options is asked when a learner answers a
question. So, if learners answer a question, they will indicate their confidence level,
either “not confident”, “somehow confident”, or “very confident”.

b. For learner control actions, our model allows learners to skip a question if they feel
it is too easy or too hard. By this, the learner’s choice can override the system’s
decision on exercise question selection to avoid boredom or frustration. Also, time
can be saved by skipping ineffective exercises.

3.3 Dynamic Difficulty Adjustment

Dynamic Difficulty Adjustment (DDA) is a technique used in video games to automati-
cally adjust the game’s difficulty level in real time based on the player’s ability [28]. For
education, this technique can be borrowed to adjust the difficulty of learning materials
based on learners’ skill levels and keep them engaged throughout the learning process.
This technique can be instrumental in online learning environments where it can be
difficult to provide personalized feedback and support to individual learners. Inspired
by DDA, adaptive practicing can be realized through different mechanisms, such as
modifying the difficulty level of the exercises, adjusting the pace of the practice or pro-
viding additional resources to help the user overcome difficult challenges. For example,
suppose a learner is struggling with a particular concept. In that case, adaptive practic-
ing can provide additional resources such as videos, interactive simulations, or practice
problems to help the user better understand the concept.
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3.4 Zone of Proximal Development

The concept of Zone of Proximal Development (ZPD) by Lev Vygotsky refers to a
zone where a learner can complete tasks with assistance but cannot independently [29].
According to Vygotsky, concrete growth can only occur in the ZPD, and learning is
most effective when timely support is provided in this zone. As a well-known and vastly
researched concept in educational psychology, ZPD laid the foundations for personalized
learning, and some learning tools have been developed to sequence content [30].

Traditional self-assessment usually contains a set of exercises without any adap-
tive mechanism. Following such a one-size-fits-all approach, some learners may feel
under-challenged and bored, while some may feel over-challenged and frustrated. By
Vygotsky’s theory, this problem stems from the fact that each learner has a different
ZPD at a given time [30]. The adaptive practicing model proposed in our study tries to
mitigate this problem by creating an adaptive engine to keep learners exercising in their
ZPD.

4 The CAP Model and Its Core Modules

Because our adaptive practicingmodel is built on learners’ confidence in their knowledge
mastery, we name our model CAP (Confidence-based Adaptive Practicing). Three core
modules of CAP are knowledge tracing, question sequencing and system self-learning.

4.1 Knowledge Tracing Module

The knowledge tracing module detects a learner’s knowledge state and tracks its change
during practicing. Relative to the Zone of Proximal Development (ZPD), three cognitive
states on a KC are defined in our study:

• Mastered: a KC has been learned, Below-ZPD.
• In-learning: a KC is being learned, In-ZPD
• Unlearnable: beyond a learner’s ability to learn, Beyond-ZPD

Additionally, we consider the fourth cognitive state on aKC,Wheel-spinning: unpro-
ductive struggling with a KC, a learning phenomenon analogic to a car stuck in snow or
mud -- the wheels will spin without getting anywhere despite devoting effort to moving
[31].

A learner’s ZPD usually keeps moving to higher levels as learners invest time in
learning or practicing. Therefore, the knowledge tracing module needs to determine a
learner’s cognitive state of a KC at any given time based on the answer response and
learner feedback. We propose a rule-based knowledge tracing algorithm, as in Table 1.

As illustrated in Table 1, five cognitive zones are identified: Beyond-ZPD, In-Upper-
ZPD, In-Mid-ZPD, In-Lower-ZPD, and Below-ZPD. Each zone corresponds to a cog-
nitive state: Unlearnable, In-Learning or Mastered. It is worth pointing out that the
cognitive zone and state identified are just a likelihood because of the subjectivity of
learners’ confidence about their mastery of knowledge.
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Table 1. Knowledge Tracing Rules

Answer Response Learner feedback Cognitive Zone (likely) Cognitive State (likely)

Question Skip Too hard Beyond-ZPD Unlearnable

Incorrect Answer Too difficult

Somehow difficult In-Upper-ZPD In-learning

Not difficult In-Mid-ZPD

Correct Answer Not confident

Somehow confident In-Lower-ZPD

Very confident Below-ZPD Mastered

Question Skip Too easy

We argue that this rule-based algorithm should be more transparent and interpretable
to educators than a machine learning and data-driven algorithm for knowledge trac-
ing. Therefore, it increases the possibility of being adopted in real-world courses by
educators.

4.2 Question Sequencing Module

The question sequencing module provides individual learners with the optimal question
sequences so that the system can keep learners practicing in their ZPD. The exercise
question presented to a learner should be based on a learner’s current knowledge state. To
make the model more transparent and interpretable to educators, a rule-based question
sequencing algorithm is decided as in Table 2. Corresponding to the four cognitive
states estimated by the knowledge tracing module, four sequencing actions are taken
respectively: Move-forward, Move-backward, Jump and Stay. The instructions in the

Table 2. Question Sequencing Rules

Cognitive state (Likely) Sequencing action (with a certain
probability)

Instructions

Mastered Move-forward If a KC is detected as mastered,
practicing likely needs move
forward to the next dependent KC

Unlearnable Move-backward If a KC is detected as unlearnable,
practicing likely needs move
backward to its prerequisite KC

Wheel-spinning Jump If a KC is detected as
wheel-spinning, practicing likely
needs jump to a sibling or
neighbour KC

In-Learning Stay If a KC is detected as In-learning,
practicing likely needs stay with
the current KC
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third column explain how each sequencing actionworks. For example, if aKC is detected
as mastered, learners need to move forward to practice with the next dependent KC.

4.3 System Self-learning Module

Learning is a complex process. In the environment of adaptive practicing, there are many
uncertainties. First, learner confidence feedback is somehow subjective. For example,
learners may be overconfident or underconfident in their knowledge mastery, or they
may be overestimate or underestimate the task difficulty. Secondly, the prerequisite rela-
tionships amongKCs could be hard or soft and difficult to quantify in domainmodelling.
Therefore, the cognitive state deduced by the learner responses is only a likelihood.

To avert the subjectivity of learner confidence feedback and make the CAP model
more effective, a system self-learning module is designed. This module aims to fine-
tune those likelihoods by analyzing learning data continuously collected from learners’
interaction with the system. We propose to utilize a reinforcement learning technique,
Thompson Sampling, for system self-learning. Thompson sampling was first proposed
by [32] as a reinforcement learning-based algorithm. It is a heuristic strategy for choosing
actions among multiple options to address the exploration-exploitation dilemma. [33]
proposed to use Thomspon sampling algorithm to generate adaptive quizzes.

In the CAP model, we set the initial likelihood of mastery or the unlearnable in
each zone. In the zone Below-ZPD, the initial likelihood of mastery is set 80%. Thus,
the initial beta distribution is beta (2, 8) for the Stay action while beta (8, 2) for the
Move-forward action. After CAP chooses an action among the two choices based on
their beta distributions, a reward is obtained. If the newly selected exercise is detected
falling In-ZPD, it means the chosen action is successful. Thus, the reward will be 1.
Otherwise, the reward will be 0. This reward is used to update the posterior probability
of each action. In the meantime, CAP adjusts the belief in the likelihood of the cognitive
state in the mastered and unlearnable zones.

5 Model Evaluation

It is crucial to evaluate the design of the CAPmodel before it is implemented in adaptive
practicing. The main evaluation question is: how effectively can CAP trace learners’
knowledge and select effective exercises?Toanswer this question,weplanned twophases
of evaluation: a) interview experts to gain insights into the strengths and weaknesses of
the model design, and b) simulate the model to quantify its effectiveness.

At this stage, we have gathered feedback by interviewing three experts in the field of
computing for education and one professor in Physics. All the interviewees had already
realized that the SRL-related challenge exists in SPOL and is imperative to be addressed.
They all agree that: a) embedding adaptive practicing activities in courses could be an
effective solution to address this challenge for STEM disciplines; b) the rule-based
algorithms for knowledge tracing and question sequencing are easy to understand and
make sense; c) considering learner control would help increase learner engagement.

As a future step, we would like to conduct a simulation of CAP to evaluate its
efficiency of the adaptive mechanism. Running a simulation allows for thorough testing
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of its functionality before implementation, and it becomes possible to optimize the
algorithms to make the CAP model more effective, accurate, and robust.

6 Conclusion

Our study examines the advantages of considering learner confidence feedback and
learner control in adaptive practicing. We have designed an innovative confidence-based
adaptive practicing model (CAP) where knowledge tracing and question sequencing
rules are created based on learner confidence and the Zone of Proximal Development.
To avert the subjectivity of learner confidence feedback, we have creatively employed
the Thompson Sampling algorithm for the system to self-learn.

Our CAP model provides a simple yet effective means for knowledge tracing and
question sequencing. We believe that this model design can shed some light on research-
ing a new way of keeping human learners in the loop of AI for shared control. Although
the CAP model is designed to facilitate SRL for self-paced online higher STEM disci-
plines, we argue that CAP could apply to many other online learning contexts. However,
further research and experiments are needed to validate such hypotheses.

References

1. Yan, H., Ives, C., Lin, F.: Adaptive practicing design for self-paced online learning. In:
Proceedings of the International Conference on Computers in Education (2021)

2. Zimmerman, B.J.: Becoming a self-regulated learner: an overview. Theory Into Pract. 41(2),
64–70 (2002)

3. Pintrich, P.R.: The role of goal orientation in self-regulated learning. In: Handbook of Self-
Regulation, Academic Press, pp. 452–502 (2000)

4. Yan, H., Lin, F., Kinshuk: Including learning analytics in the loop of self-paced online course
learning design. Int. J. Artif. Intell. Educ. 31, 878–895 (2021)

5. Broadbent, J., Poon, W.L.: Self-regulated learning strategies & academic achievement in
online higher education learning environments: a systematic review. Internet High. Educ. 27,
1–13 (2015)

6. Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G.J., Paas, F.: Supporting self-
regulated learning in online learning environments and MOOCs: a systematic review. Int. J.
Hum.–Comput. Interact. 5(4–5), 356–373 (2019)

7. Viberg, O., Khalil, M., Baars, M.: Self-regulated learning and learning analytics in online
learning environments: a review of empirical research. In: Proceedings of the Tenth
International Conference on Learning Analytics & Knowledge (2020)

8. Dignath, C., Büttner, G.: Teachers’ direct and indirect promotion of self-regulated learning
in primary and secondary school mathematics classes–insights from video-based classroom
observations and teacher interviews. Metacogn. Learn. 13, 127–157 (2018)

9. Moos, D.C., Ringdal, A.: Self-regulated learning in the classroom: A literature review on the
teacher’s role. Educ. Res. Int. 2012 (2012)

10. Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender systems
in technology enhanced learning. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 387–415. Springer US, Boston, MA (2011). https://
doi.org/10.1007/978-0-387-85820-3_12

https://doi.org/10.1007/978-0-387-85820-3_12


280 H. Yan et al.

11. Pelánek, R.: Bayesian knowledge tracing, logistic models, and beyond: an overview of learner
modeling techniques. User Model. User-Adap. Inter. 27(3), 313–350 (2017)

12. B. Clement, D. Roy, P. Oudeyer and M. Lopes, Multi-Armed Bandits for Intelligent Tutoring
Systems, 2015

13. Holstein, K., Aleven, V., Rummel, N.: A conceptual framework for human–AI hybrid adaptiv-
ity in education. In: Artificial Intelligence in Education: 21st International Conference, AIED
2020, Proceedings, Ifrane, Morocco (2020). https://doi.org/10.1007/978-3-030-52240-7

14. Novacek, P.: Confidence-based assessments within an adult learning environment. Int. Assoc.
Dev. Inform. Soc. (2013)

15. Deci, E.L., Vallerand, R.J., Pelletier, L.G., Ryan, R.M.: Motivation and education: the self-
determination perspective. Educ. Psychol. 26(3–4), 325–346 (1991)

16. Doroudi, S., Aleven, V., Brunskill, E.: Where’s the reward? Int. J. Artif. Intell. Educ. 29(4),
568–620 (2019)

17. Brusilovsky, P.: AI in education, learner control, and human-AI Collaboration. Int. J. Artif.
Intell. Educ. 34(1), 122–135 (2023). https://doi.org/10.1007/s40593-023-00356-z

18. Bjork, R.A., Dunlosky, J., Kornell, N.: Self-regulated learning: beliefs, techniques, and
illusions. Annu. Rev. Psychol. 64, 417–444 (2013)

19. Sorgenfrei, C., Smolnik, S.: The effectiveness of e-learning systems: a review of the empirical
literature on learner control. Decis. Sci. J. Innov. Educ. 14(2), 154–184 (2016)

20. Weber, G., Brusilovsky, P.: ELM-ART: an adaptive versatile system forweb-based instruction.
Int. J. Artif. Intell. Educ. (IJAIED) 12, 351–384 (2001)

21. Rahdari, B., Brusilovsky, P., He, D., Thaker, K.M., and Lee, Y.J.: Helper: an interactive
recommender system for ovarian cancer patients and caregivers. In: Proceedings of the 16th
ACM Conference on Recommender Systems (2022)

22. Brusilovsky, P.: Adaptive navigation support. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.)
The Adaptive Web, pp. 263–290. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72079-9_8

23. Ekstrand, B.: What it takes to keep children in school: a research review. Educ. Rev. 67(4),
459–482 (2015)

24. Papoušek, J., Pelánek, R.: Should we give learners control over item difficulty? In: Adjunct
Publication of the 25th Conference on UserModeling, Adaptation and Personalization (2017)

25. Hunt, D.: The concept of knowledge and how to measure it. J. Intellect. Cap. 4(1), 100–113
(2003)

26. Gardner-Medwin, T., Curtin, N.: Certainty-based marking (CBM) for reflective learning and
proper knowledge assessment. In: REAP International Online Conference on Assessment
Design for Learner Responsibility (2007)

27. Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., Fernández-
Leal, A.: Human-in-the-loop machine learning: a state of the art. Artif. Intell. Rev. 56(4),
3005–3054 (2023)

28. Zohaib, M.: Dynamic difficulty adjustment (DDA) in computer games: a review. Adv. Hum.-
Comput. Interact. 2018, 1–12 (2018)

29. Hedegaard, M.: The zone of proximal development as a basis for instruction. In: An
Introduction to Vygotsky, Routledge, pp. 234–258 (2012)

30. Vainas, O., et al.: E-Gotsky: sequencing content using the zone of proximal development.
ArXiv 2019

31. Beck, J., Gong, Y.: Wheel-spinning: students who fail to master a skill. In: Artificial
Intelligence in Education: 16th International Conference, AIED 2013, Memphis (2013)

32. Thompson, W.: On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika 25(3/4), 285–294 (1993)

33. Lin, F.: Adaptive quiz generation using Thompson sampling. In: Third Workshop Eliciting
Adaptive Sequences for Learning (WASL 2020), co-located with AIED 2020 (2020)

https://doi.org/10.1007/978-3-030-52240-7
https://doi.org/10.1007/s40593-023-00356-z
https://doi.org/10.1007/978-3-540-72079-9_8


Early Math Skill as a Predictor for Foundational
Literacy

Haya Shamir(B), Mikayla Tom, David Pocklington, Erik Yoder,
and Alexander Houchins

Waterford Institute, Taylorsville, U.S.A.
{hayashamir,mikaylatom,davidpocklington,erikyoder,

alexanderhouchins}@waterford.org

Abstract. This study examined the validity of early math skills as predictors of
literacy skills. Data was collected from students using a home-based kindergarten
readiness program. Performance on math domain metrics within a kindergarten
readiness programwas used to generate models predicting scores and grade equiv-
alence on an end of year literacy assessment. Scores on math strands were highly
correlated with later reading performance. Performance on math and science met-
rics were also valid predictors for students reaching literacy benchmarks. This
study highlights the interdependence of learning domains while noting areas, such
as language concepts, where math performance is a comparatively poor predictor.

Keywords: Math · Reading · Predictive Modeling · Young Learners

1 Introduction and Literature Review

Research has revealed a strong relationship between literacy and math skills in young
learners [1]. Executive functioning skills, including response inhibition, working mem-
ory, and cognitive flexibility, are essential for both math and literacy [2]. Many learning
factors have been found to be valid predictors for both subjects, and key skills within
one domain can identify students at risk in both [3]. Despite this, math and literacy tend
to be taught as separate domains.

Literacy and math skills become interwoven with each other very early on in a
student’s academic development [4, 5]. As a result, it becomes difficult to parse which
subject, or subskill, is influencing the development of the other. Early literacy skills have
been found to predict the development of later math skills. Longitudinal research has
shown that early reading skills lay the foundations for math skills [6], with as much
as 56% of the variance in math achievement explained by reading ability [7]. While
mathematical language by itself is a strong indicator of later success in the subject [8],
general literacy skills are needed to understand the written symbolism and the story-
spoken problems in early mathematics [9]. Switching perspectives, early math skills
have been shown to be more strongly associated with later literacy skills than even early
literacy skills in most cases [10]. Braak et al. [11] investigated the potential mediating
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role of executive functioning in the relationship between early math scores and later
literacy scores and found that high early math performance can help with executive
functioning development and thus improve literacy skills. Integrating mathematics and
reading curricula could support the development of both skill sets [12].

Advances in technology offer potential solutions for both integrating and better
understanding each domain.Machine learning describes the use of automated or directed
systems that measure performance on a specified task and attempt to improve with
experience [13].Machine learning techniques canbeutilized to streamline theprediction-
making process for student outcomes. A recent international study examining literacy
ability in fourth-grade students used this approach to identify key factors predictive
of literacy skills [14]. Using data to make increasingly better decisions in machine
learning provides unique benefits to educational settings, such as training an AI tutor to
recognizewhen students are havingdifficulty understanding concepts, provide intelligent
moderation, and decidewhat learning content to provide students [15].Multiplemachine
learning algorithms, such as decision trees, linear support vector machines, and logistic
regression, were used in a quantitative study to predict literacy and math performance
from students’ demographics with up to 90% accuracy [16].

The use of machine learning in academic contexts expanded noticeably during the
COVID-19 pandemic [17]. Given this increased prominence, it should be noted that
not all research into machine learning in the classroom has yielded positive results. A
large-scale study of primary andmiddle school children conducted prior to the pandemic
found that machine-learning approaches were not able to better predict if students would
fall below a literacy benchmark than extant regression models [18]. Not all modeling
techniques are appropriate for every audience, and when used with young learners, some
approaches may under or overestimate student ability [19].

While machine learning in the classroom is not always fruitful, it has been found to
be useful in predicting which students may be at risk of falling behind [20]. Identifying
at-risk students early on is essential, as later learning success in math and literacy has
been shown to be strongly predicted by scores in these subjects from preschool and even
prior to preschool [21–23]. A meta-analysis covering 120 studies on early education
found significant average effect sizes in the cognitive and social-emotional domains,
as well as in academic progress, for children who attended a preschool program when
compared to children who received no early educational interventions [24]. In addition
to improvement in math and literacy skills, other positive long-term outcomes, such as
decreases in grade retention and significant increases in high school graduation rates,
are seen when early childhood education programs are implemented [25]. The benefits
of early education and interventions have long-term effects that have been found to be
predictive of later skills.

2 Research Goal

The current study contributes to existing research by seeking to clarify how the develop-
ment of math skills influences the development of early literacy skills. This study utilizes
machine learning algorithms to predict early reading scores from early math scores. It
is hypothesized that math scores will be predictive of literacy scores due to the strong
relationships between the subjects and based on prior research findings.
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3 Research Methodology

3.1 Participants

This study consisted of pre-kindergarten (N = 22,509) students who participated in
Waterford Upstart during the 2021–2022 program year.

3.2 Materials

Waterford Upstart. Waterford Upstart is a home-based, technologically enabled
kindergarten readiness program that gives students access to an adaptive early literacy,
math, and science curriculum. The nationally-implemented program provides families
who do not have access to computers or reliable internet equipment. Regular contact
with coaches is used to promote student and family engagement.

Waterford Early Learning (WEL). WEL is a personalized, computer-adaptive
instruction that guides students through an individualized learning path. The soft-
ware consists of an Early Reading Program (ERP) and an Early Math and Science
(EMS) curriculum. The pre-kindergarten ERP curriculum uses the following instruc-
tional strands: phonological awareness, phonics, comprehension and vocabulary, and
language concepts.

The EMS curriculum uses the following instructional strands: number and car-
dinality, operations and algebraic thinking, measurement and data, geometry, and
science.

WaterfordAssessments of Core Skills (WACS). WACS is an adaptive assessment that
tests key pre-literacy and reading skills. To establish concurrent validity and predictive
validity, student performance onWACSwas compared to performance on five commonly
used standardized tests also measuring early reading skills; all correlations between tests
are significant, ranging from r = .41 to r = .78 (median r = .63). Additional analyses
indicate thatWACS is internally consistent and has strong test-retest reliability (r = .90).

3.3 Procedure

WACS was administered at the beginning and end of the program. Between testing
periods, students who participated in Waterford Upstart were expected to use WEL
for 15 min a day, five days per week. Scores were recorded within WEL for each
strand. From this data, 11 input variables were collected for each student, including
performance on all EMS strands, overall performance within EMS, the total number of
objectives encountered, the total number of scored objectives encountered, the number
of objectives encountered successfully completed, the percentage of scored objectives
successfully completed, and usage of the EMS program. Reading performance metrics
within WEL and performance on the WACS assessment at the end of the program were
chosen as the target variables. Cut-off thresholds were calculated for each ERP strand
within WEL with a criterion of 80 or above. For end-of-year scores for WACS, the
criterion was set at a score of 2001, the equivalent of kindergarten beginning.
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Data collected fromWEL andWACS was partitioned, with 70% of the data used for
training the model and the other 30% used for testing.

SPSS modeler used this data to create categorical and regression models that predict
students’ ERP performance and WACS scores at the end of the program year based on
their EMS performance halfway through the program year in December 2021.

4 Research Outcomes

4.1 Categorical Models

SPSS modeler was used to create categorical models to predict whether a student met
the threshold score of 80% on their ERP activities at the end of the program year based
on their EMS scores halfway through the program (see Table 1). Analysis of scores
was broken down by overall ERP, phonics, phonological awareness, comprehension and
vocabulary, and language concepts.

Overall ERP. When predicting if a student’s overall ERP score passed the 80%
threshold, the modeler found the aggregate, Chi-square automatic interaction detec-
tor (CHAID) decision tree, exhaustive CHAID, least-squares support vector machine
(LSVM), and discriminant models to make the best predictions. The aggregate model
predicted overall ERP scores fromEMS scores with the highest accuracy rate of 76.71%.
The discriminant model had the highest precision at 80.93%. LSVM had the highest
recall and F1 percentages at 92.17% and 83.69%, respectively. The greatest difference
between the model’s metrics was in recall, with a 9.22% difference between the highest
recall of 92.17% (LSVM) and the lowest recall of 82.95% (discriminant). Accuracy,
precision, and F1 scores all had a difference of 4.30% or less between the models, which
resulted in the highest and lowest scores.

The LSVM model had the highest number of true positives and the lowest number
of false negatives. This accounts for the model’s high recall and F1 score. While the
LSVM model had high recall and F1 scores, it resulted in the lowest precision, which
is explained by its high count of false positives. The distributions of the aggregate,
CHAID, exhaustive CHAID, and discriminant model’s false negatives, false positives,
true negatives, and true positives were similar.

Literacy Strands. When predicting categorical performance on the four constituent
literacy strands, CHAID decision tree, exhaustive CHAID, and LSVM models were
common to three of the four strands, phonological awareness, phonics, and compre-
hension and vocabulary. For these three strands, the highest accuracy and F1 values
found for these models were associated with either CHAID (comprehension and vocab-
ulary, accuracy 79.92%, F1 88.31%) or exhaustive CHAID (phonics, accuracy 74.28%,
F1 83.41%; phonological awareness, accuracy 71.26%, F1 66.83%). Models predict-
ing phonological awareness also included classification and regression (C&R) and C5.0
decision tree models. Models predicting language concepts notably did not include
CHAID decision trees. Precision was highest in the aggregated models for phonics and
comprehension and vocabulary. For phonological awareness, the greatest precision was
identified as LSVM. Performance metrics within each strand were broadly consistent
across the range of models considered, with differences between the highest and lowest
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Table 1. Accuracy, precision, recall, and F1 percentages by reading subject

Subject Model Accuracy Precision Recall F1

Overall Aggregate 76.71%* 79.83% 87.30% 83.40%

CHAID 76.59% 79.43% 87.80% 83.41%

Exhaustive
CHAID

76.66% 79.50% 87.83% 83.45%

LSVM 75.92% 76.64% 92.17%* 83.69%*

Discriminant 75.48% 80.93%* 82.95% 81.93%

Phonological
Awareness

Aggregate 71.26%* 70.10% 63.84% 66.83%

C&R Tree 70.60% 68.50% 65.12% 66.77%

C5.0 70.81% 68.80% 65.19%* 66.95%*

CHAID 70.34% 70.18% 60.13% 64.77%

LSVM 69.87% 71.35%* 56.09% 62.81%

Exhaustive
CHAID

71.26%* 70.10% 63.84% 66.83%

Phonics Aggregate 73.62% 76.93%* 88.68% 82.39%

CHAID 73.61% 76.42% 89.75% 82.55%

LSVM 73.92% 75.01% 93.73%* 83.33%

Exhaustive
CHAID

74.28%* 75.63% 92.98% 83.41%*

Comprehension
and
Vocabulary

Aggregate 79.69% 82.79%* 93.34% 87.75%

CHAID 79.92%* 80.79% 97.39%* 88.31%*

LSVM 78.69% 79.78% 97.33% 87.68%

Exhaustive
CHAID

79.70% 81.60% 95.49% 88.00%

Language
Concepts

Aggregate 70.18%* 70.84% 97.25% 81.97%

C5.0 69.81% 70.59% 97.18% 81.78%

Discriminant 66.24% 73.45%* 80.73% 76.92%

LSVM 70.15% 70.43% 98.54% 82.15%*

Exhaustive
CHAID

69.81% 70.10% 98.86%* 82.03%

End of Year WACS LSVM 85.75% 86.42% 98.93% 92.25%

metrics of accuracy, precision, and F1 ranging from less than 2% (phonics) to 5.23%
(language concepts).

End-of-Year WACS. When predicting if students passed a minimum score threshold
of 2001 on end-of-year WACS, the equivalent of kindergarten beginning, from EMS
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scores, the modeler found the LSVM model to be the best predictor. Of the models
considered, LSVM was the only approach that resulted in a reasonable recall.

4.2 Regression Models

Table 2. Correlation and relative error by subject

Subject Model Correlation Relative Error

Overall Neural Net 0.745 0.448

Linear AS 0.734 0.462

Regression 0.734 0.464

Generalized Linear 0.734 0.464

Linear 0.671 0.550

Phonics Neural Net 0.671 0.550

Linear AS 0.674 0.546

Regression 0.670 0.552

Generalized Linear 0.670 0.552

Linear 0.544 0.704

Phonological
Awareness

Neural Net 0.643 0.587

Linear AS 0.635 0.597

Regression 0.635 0.597

Generalized Linear 0.635 0.597

Linear 0.604 0.636

Comprehension and
Vocabulary

Linear AS 0.856 0.267

Exhaustive CHAID 0.853 0.273

XGBoost 0.852 0.345

C&R 0.846 0.284

CHAID 0.847 0.283

Language Concepts Neural Net 0.212 0.956

Linear AS 0.223 0.951

Generalized Linear 0.207 0.958

Regression 0.207 0.958

CHAID 0.196 0.962

End of Year WACS Linear AS 0.496 0.757

Linear 0.500 0.751

Exhaustive CHAID 0.481 0.772

XGBoost 0.493 0.790

Regression 0.475 0.777

SPSS modeler was used to build regression models to predict students’ ERP and
WACS scores at the end of the program year based on EMS scores halfway through the
program (see Table 2). Themodeler chose the regressionmodels based on the best fit and
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calculated the Pearson correlation coefficient between the actual and predicted scores
and the normalized sum of squares. Correlation strength was defined by absolute value
and labeled weak, medium, or strong based on the modeler guide. Analysis of scores
was broken down by overall ERP, phonics, phonological awareness, comprehension and
vocabulary, language concepts, and WACS.

Overall ERP. EMS scores predicted overall ERP scores with strong correlation
coefficients, ranging from 0.671 to 0.745. Relative error ranged from 0.448 to 0.550.

Phonics. EMS scores predicted ERP scores with medium to strong correlation
coefficients, ranging from 0.544 to 0.674. Relative error ranged from 0.546 to 0.704.

Phonological Awareness. EMS scores predicted phonological awareness scores with
medium correlation coefficients, ranging from 0.604 to 0.643. Relative error ranged from
0.587 to 0.636.

Comprehension and Vocabulary. EMS scores predicted comprehension and vocabu-
lary scores with strong correlation coefficients, ranging from 0.846 to 0.856. Relative
error ranged from 0.267 to 0.345.

Language Concepts. EMS scores predicted language and comprehension scores with
weak correlation coefficients, ranging from 0.196 to 0.223. Relative error ranged from
0.951 to 0.962.

WACS. EMS scores predicted WACS scores with medium correlation coefficients,
ranging from 0.475 to 0.500. Relative error ranged from 0.751 to 0.790.

5 Discussion

This study usedmachine learningmodels to predict early reading scores from early math
scores.Whether students’ overall reading scores passed the 80% threshold was predicted
with an accuracy ranging from 75.48% to 76.71%. The comprehension and vocabulary
strand was predicted with the highest accuracy of 79.92%. The high predictability of
mathematics skills on the comprehension and vocabulary strand, in conjunction with the
findings of Purpura et al. [9] that vocabulary is predictive of mathematics skills, suggests
an interconnectivity between vocabulary and mathematics skills. Whether a student
achieved the phonics and phonological awareness literacy threshold was predicted from
EMS scoreswith an accuracy of up to 74.28% and 71.26%, respectively. Passing the 80%
threshold in the language concepts literacy strand was predicted by EMS scores with
an accuracy of up to 70.18%. These results are consistent with the hypothesis that math
scores would be predictive of literacy scores. The ability to predict whether a student
passes the 80% threshold in preschool reading skills from preschool math skills with an
accuracy of 70%and higher demonstrates the close relationship between the two subjects
at an early age, as is consistent with previous findings [4, 5]. These findings suggest that
math scores can be a validmeasure for predicting whether a student reaches a benchmark
in literacy skills, which can be useful for identifying children whose reading skills are
at risk and could benefit from interventions.
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Furthermore, math skills predicted overall literacy scores using regression models
with a strong correlation. These findings reveal a strong linear relationship between
students’ math and reading scores, further highlighting the interconnectivity of the two
domains.When breaking down the predictive analysis by literacy strand, comprehension
and vocabulary were predicted by math skills with the highest correlation coefficients
ranging from 0.846 to 0.856 and low relative error ranging from 0.267 to 0.345. Compre-
hension and vocabulary was also the substrand that the categorical model predicted with
the highest accuracy, inferring the high predictive power of math skills on this literacy
substrand. Math skills predicted phonics and phonological awareness skills with similar
medium correlation coefficients. Language concepts had weak correlation coefficients
when predicted by math skills. These findings are consistent with previous studies that
have found math scores to be predictive of reading scores [10].

Early math performance was also predictive of end-of-year performance on the liter-
acy strands assessed by WACS. This was shown both when looking at whether students
would achieve end-of-year Kindergarten readiness, scoring at least 2001, and when
assessing the linear relationship between performance in each domain.

6 Conclusions

This study demonstrates how two foundational skill sets can grow in tandem, and how
growth in one, math and science skills, can predict growth in another, early literacy skills.
As students learn the fundamentals of arithmetic and number concepts, they learn and
practice skills that will be transferable when learning letters and grammar. By way of
acknowledgment, it is possible that practice and repetition in the skills of early knowledge
acquisition improve with use, regardless of the subject they are used on. Students learn
how to learn, and the skills that facilitate this broadly in math domains are, to a degree,
applicable in reading domains.

This study highlights the interdependence of these two learning domains, even at
an early age. It is possible to identify students who are at risk of falling behind in
one area based on their performance in another. Future research should further define
relationships between risk factors, allowing educators to efficiently target interventions
that can have the greatest impact during the critical period of early instruction when
students are mastering these fundamental concepts. Speculatively, it should also be
possible for further research to tailor specific interventions with the goal of promoting
cross-domain learning.

Given the relative difficulty in predicting the language concepts, it is also inter-
esting to note that, despite this interconnectedness, there are clearly areas unique to
each domain. Language concepts, more so than the other areas of foundational literacy
explored in this study, capture something specific to literacy development beyond the
foundational learning skills discussed above.

Limitations of the current study should be noted. This study had a specific predictive
window, assessing the predictive ability of math scores on reading scores for young
students with a six-month delay. Future research should explore the validity of this
relationship over more extended periods of time while also using a more diverse range
of ages.
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Abstract. Students learning with intelligent tutoring systems (ITS)
do not always trust system recommendations. One solution for this
is explainable AI (XAI), which is shown to increase trust in AI. Our
research focuses on how students’ personality traits affect their interac-
tions with XAI, and how XAI affects students’ trust and actions in an
ITS. We evaluated this by adding XAI to SQL-Tutor and conducting a
pilot study with 15 participants from an introductory database course.
We found that personality traits affect students’ interactions with XAI,
and that students engaging with XAI trust the system more.

Keywords: Intelligent tutoring system · SQL-Tutor · explainable
artificial intelligence · problem selection

1 Introduction

Intelligent tutoring systems (ITSs) improve students’ learning outcomes by pro-
viding adaptive support based on the student’s knowledge and progress [1,17].
SQL-Tutor is a mature constraint-based ITS that teaches students to write SQL
queries [13,14]. Previous studies with SQL-Tutor have shown that students who
work on problems recommended by the system tend to learn more [12]. However,
students accept these recommendations variably, which may be because they do
not understand or trust the reasoning behind the recommendations.

A potential solution to increase students’ trust in the system, and hopefully
their willingness to select recommended problems, is explainable AI (XAI), which
has been shown to increase users’ trust in decisions made by AI [4]. So far, there
has not been extensive research on the factors that affect how students interpret
and interact with explanations in an ITS. This paper presents our work on adding
explanations to SQL-Tutor and the results of a pilot study we used to investigate
the following questions:

– RQ1: How does students’ engagement with XAI affect their interactions with
the ITS?

– RQ2: How do students’ personality traits affect their interactions with expla-
nations?

– RQ3: What explanations do students want?

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Our key findings were: (1) students engaging with explanations accept recom-
mendations more; (2) students want clear steps to apply explanations; and (3)
students’ personality traits affect their use and understanding of explanations,
so personalisation is needed to maximise the benefit of explanations in an ITS.

The paper’s structure is as follows: Sect. 2 reviews prior research, while Sect. 3
presents our solution. Section 4 details the experiment design, then results in
Sect. 5, and implications in Sect. 6. Finally, Sect. 7 concludes.

2 Related Work

XAI exposes decision-making logic to a system’s users, allowing them to make
informed decisions to trust or distrust the system. However, many factors also
influence how students engage with explanations. To implement effective expla-
nations, we need to understand what factors affect students’ interactions with
explanations, and how to adapt explanations for these factors.

A widely recognised quality attribute for XAI is completeness [5,15]. Achiev-
ing this requires us to predict what gaps exist in users’ knowledge, but these
gaps vary between users and over time, which alters what is relevant and use-
ful [10,11]. Also, there is a trade-off with interpretability [5,6,15], so we must
limit the depth of explanations. Excessively simple explanations can bore users,
making them unwilling to read other explanations, while complex explanations
can overwhelm. One option to make explanations more digestible is to split
them into smaller parts. This lessens the need to predict users’ wants, as they
can select relevant explanations. Labelling each part as response to a question,
such as which problems can I solve to improve my ranking in X area? [2], also
promotes reflection [9]. In an ITS for constraint satisfaction problems, the ACSP
applet, Conati et al. [4] use explanations that gradually deepen students’ knowl-
edge. However, students must review early explanations each time, reducing
their freedom. Students who are unwilling to read all explanations miss infor-
mation from the later explanations. Allowing students to access explanations in
any order would give them more freedom, although it risks students skipping
important knowledge.

We can help users apply what they learn from explanations by adding action-
able steps. Singh et al. [16] found most users preferred explanations with steps
when communicating a system’s outputs to a third party. However, some users
preferred explanations without steps because they were shorter, which confirms
the importance of providing explanations in small chunks.

Users’ interactions with explanations are affected by factors like personality
traits, knowledge, and the task’s complexity and risk [2–4]. In the context of the
ACSP applet, Conati et al. [4] found the benefits of explanations were affected
by students’ conscientiousness, need for cognition, and reading comprehension,
which indicates a need for personalisation based on user characteristics.

While there is a clear need for adaptive explanations, it is not well established
how we can personalise explanations in ITSs.
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3 Explanations in SQL-Tutor

We added explanations for problem recommendations in SQL-Tutor. When a
student requests a new problem, relevant problems are listed by difficulty. The
recommended problem is highlighted first, but students can choose any problem.

Why is this problem being recommended? Explanation 1 (E1) uses a
unique template for each problem recommendation case. For example, if many
problems are the right level for the student, unsolved, and not being worked
on, then the template will be There are multiple unsolved problems for the X
clause in this database. The recommended problem is the next unsolved prob-
lem which is at/above your student level and that you are not already working
on, problem Y, where X is the SQL clause, and Y is the problem’s ID.

Why does problem selection matter? Explanation 2 (E2) is always The right
problem for you is one that extends your knowledge and helps you improve
your skills. A problem that’s too easy won’t help you learn. A problem that’s
too challenging will be so difficult that you don’t have enough existing knowl-
edge to understand the problem or solution.

How is my student level calculated? The student’s level and whether it
has changed in the current session affect Explanation 3 (E3). The first half
of the explanation is always Your student level is calculated based on how
many problems you have solved or failed recently, their problem levels, and
your problem level. You are currently at level X, where X is the student’s
level. The second half of the explanation is initially Your student level hasn’t
changed this session, yet, and updates when the student’s level increases or
decreases.

Each explanation is initially hidden, with the title questions shown. They are
toggled by clicking the related question, and have a 5-point Likert scale to gather
ongoing feedback on changes in participants’ perceptions of the explanations.

4 Experiment Design

We recruited 15 volunteers from students enrolled in an introductory database
course at the University of Canterbury. The students had been taught to write
SQL select queries in lectures, but most had never used SQL-Tutor before. Three
participants used SQL-Tutor in lab sessions before participating in this study.

Each participant attended an individual session structured as follows: (1) We
asked participants to complete the ten-item personality inventory (TIPI) [7], to
determine a score for each of the Big-Five personality traits. (2) We demon-
strated the explanations in SQL-Tutor and asked them to view the explanations
at least once during their session. (3) They used SQL-Tutor with a Tobii Pro
Lab eye tracker capturing their gaze movements. (4) They responded to a ques-
tionnaire. (5) We provided them with a $20 voucher and debriefed them.

The questionnaire in part 4 included the System Causability Scale (SCS) [8],
and open questions. We modified the SCS to make all statements relevant to
this study, and aligned the Likert scale with the 1-to-7 scale used for the TIPI.
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5 Results

The participants spent on average 33.7min, with a standard deviation (sd) of
3.5min, solving problems in SQL-Tutor. They attempted on average 9.5 prob-
lems (sd = 3.4), and solved 8.7 problems (sd = 4.3), making 40.3 submissions
(sd = 21.0). They visited the problem selection page on average 9.9 times (sd
= 3.2) and viewed at least one explanation on 4.1 visits (sd = 3.2). The most
explanation views by a participant was 33. Three participants did not view all
types of explanations, and we excluded their data from relevant analyses.

Table 1 shows the scores on five SCS questions. The two statements with the
lowest mean ratings are I understood the explanations within the context of my
work and I was able to use the explanations with my knowledge. These statements
indicate how well the participants felt they could use the explanations. The other
three statements with higher mean ratings indicate how well the participants
understood the explanations. Therefore, participants rated the consistency and
clarity of the explanations more highly than their ability to apply them.

Table 1. SCS ratings 1 (Disagree strongly) to 7 (Agree strongly)

Question (n=12) M (sd) Mdn

I understood the explanations within the context of my work. 5.75 (1.49) 6
I did not need support to understand the explanations. 6.00 (1.41) 6
I was able to use the explanations with my knowledge. 5.17 (1.47) 5.5
I did not find inconsistencies between explanations. 5.83 (1.64) 6.5
I think that most people would learn to understand the explanations very quickly. 5.83 (1.19) 6

5.1 RQ1: How Does Students’ Engagement with Explanations
Affect Their Interactions with the ITS?

To evaluate RQ1, we filtered participants’ problem selections to include only the
45 instances where they opened E1, and found they then selected the recom-
mended problem 37 times. The strong Spearman’s correlation coefficient (rs =
.90, p < .001) indicates that there is a high likelihood that students will select
the recommended problem after reading E1.

When asked how explanations affected their problem selection, 8 of the 15
participants agreed the explanations made them more willing to accept recom-
mendations. Those who did not agree either trusted the ITS or their own problem
selection already, could not apply the explanations, or viewed no explanations.

5.2 RQ2: How Do Students’ Personality Traits Affect Their
Interactions with Explanations?

To evaluate RQ2, we used a non-parametric Mann-Whitney U test due to the
small sample size and non-normal distribution. We combined the personality test
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data, explanation ratings, gaze data, and system logs, and split participants into
low and high-scoring groups around the median score for each personality trait.

Tables 2 and 3 show the results for the Big Five personality traits with mul-
tiple significant differences between the high and low groups. More agreeable
participants (Table 2) spent less time viewing each explanation without fixating
elsewhere on the screen. This may indicate that more agreeable participants are
satisfied with less explanation, or are more interested in comparing the expla-
nations with other information on the page. Less agreeable participants also
typically used the system for longer before viewing explanations for the first
time, which may show a preference for more independent learning.

Table 2. Mann-Whitney U Test for Agreeableness

Group M (sd) Mdn U p r

Average duration of
visits to E1 (s)

low (n = 7)
high (n = 5)

4.16 (2.54)
1.72 (0.98)

3.91
1.46

30.0 <.05 .59

Average duration of
visits to E3 (s)

low (n = 7)
high (n = 5)

4.23 (2.05)
2.25 (0.69)

3.54
2.31

30.0 <.05 .68

Average duration of all
visits to explanations (s)

low (n = 7)
high (n = 5)

4.21 (2.83)
1.75 (0.90)

2.32
1.39

31.0 <.05 .65

Time until first visit to
E3 (s)

low (n = 7)
high (n = 5)

327.76
(110.07)
180.68 (47.87)

376.47
162.09

32.0 <.05 .63

Less emotionally stable participants took longer to open E1 for the first time
and rated E3 as less useful than their more stable counterparts (Table 3). These
differences demonstrate an effect on how participants approach using explana-
tions, and what they want from explanations in an ITS.

Table 3. Mann-Whitney U Test for Emotional Stability

Group M (sd) Mdn U p r

I found the explanation for
“How is my student level
calculated?” useful

low (n =6)
high (n = 6)

4.5 (1.64)
6.5 (0.55)

4.5
6.5

4.5 <.05 .64

Time to first mouse click on
E1 (s)

low (n =6)
high (n = 6)

331.33
(116.89)
166.16 (58.63)

373.41
140.93

32 <.05 .65

Less conscientious participants spent longer viewing E2 for the first time,
(Mann-Whitney U test: U = 31, p < .05, r = .60). The low (n = 6) and high
(n = 6) conscientiousness groups had mean visit lengths of 3.48 s (sd = 5.01)
and 0.34 s (sd = 0.23), respectively, and medians of 0.93 s and 0.3 s.
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5.3 RQ3: What Explanations Do Students Want?

We evaluated RQ3 using questionnaire responses and gaze/click data for each
explanation. Participants read E1 for the most time and E3 for the least, but
rated E3 more highly than E1 (Table 4). This is consistent with the SCS ratings
(Table 5): E3 has the highest mean and median ratings, and the smallest sd,
indicating that participants generally found E3 more useful than E1 and E2.

Table 4. Explanation ratings 1 (Not useful) to 5 (Very useful)

Explanation (n = 12) Total time (s) Mean time per visit (s) Times opened Rating

E1 42.7 (33.6) 3.14 (2.32) 4.66 (2.56) 3.74 (1.28)
E2 24.6 (19.1) 3.16 (3.21) 3.83 (2.58) 3.96 (1.08)
E3 21.9 (14.8) 3.40 (1.79) 4.75 (2.83) 4.08 (0.84)

Table 5. Three SCS questions 1 (Disagree strongly) to 7 (Agree strongly)

Question (n = 12) M (sd) Mdn

I found the explanation for “How was this
problem selected?” useful.

5.00 (1.95) 5.5

I found the explanation for “Why does choosing
the right problem matter?” useful.

4.50 (2.15) 4

I found the explanation for “How is my level
calculated?” useful

5.50 (1.57) 6

Participants sometimes opened E3 to view their student level, and did not
read further. Comparing participants’ focus in the first and second half of their
sessions (Table 6) shows that interest in E3 decreased less over time than for E1
and E2. Figure 1 shows participants focused on their student level in E3, in the
second half of the session. This suggests that participants were most interested
in their student level, which changed often and informed their choices.

Table 6. Time (s) students spent viewing explanations in each half of the session

Explanation (n = 12) Time in 1st half Time in 2nd half Change

E1 437.20 75.58 −82.71%
E2 258.20 36.70 −85.79%
E3 228.97 56.26 −75.43%
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In response to the open questions, participants reported increased confidence
in the system’s problem recommendations, as they were reassured that select-
ing the recommended problem would aid their learning. They also suggested
improvements, including merging explanations, making them visible all the time,
adding data to back up recommendations, and adding steps for independent
problem selection or changing their student level. Each participant’s suggestion
was different, so it is unclear which would be the most useful.

The need for clear steps aligns with our earlier observation that participants
rated their ability to apply the explanations lower than their understanding of
the explanations (Table 1). Clear steps may help students apply what they learn
from explanations more easily, as recommended by Arnold et al. [2].

6 Discussion

The high correlation between participants viewing E1 and then selecting the
recommended problem indicates that engaging with explanations affects trust
in the system’s recommendations. This shows that XAI can promote behaviours
that improve students’ learning in ITSs. Participant feedback also reinforces the
idea that explanations can increase acceptance of the system’s recommendations.

Differences in the way participants’ personality factors interacted with the
explanations indicate a need for explanations to adapt to students’ personality
factors. More work is needed to determine what makes explanations more useful
for students in different personality groups, alongside other factors that may
affect students’ use of explanations, such as reading comprehension [4]. While
adapting explanations may be costly, our results show that participants who
engaged with the explanations more were more likely to select the recommended
problem, which is desirable in SQL-Tutor.

Fig. 1. Heat map of the first half (left) and the second half (right) of views of the
problem selection page

Participants showed more interest in explanations that showed their progress
and change frequently (E1 and E3) than E2, which is static. They also wanted
clear steps to help them apply what they learnt from explanations, which may
be particularly valuable for students who find explanations less useful.
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There are several limitations to this research. Our small sample size makes it
difficult to generalise about the wider population of students. We also requested
volunteers, creating a selection bias for students more familiar with the course
content. The order of the explanations likely influenced participants’ interactions
with them, as they often read the top explanation first. This explanation order
was also different from the order we asked students to rate the explanations
in the SCS. Participants who did not read the questionnaire carefully may have
assumed the order of the questions. Also for the questionnaires, some participants
interpreted ’explanations’ as feedback on their problem solving attempts, instead
of the explanations we implemented. As a result, we disregarded some responses
to the open questions. Finally, measuring factors like reading comprehension
would give more insight into students’ interactions with explanations.

7 Conclusions

This study contributes to our understanding of how students interact with XAI
in an intelligent tutoring system and the factors that can affect these inter-
actions. Our results confirm that explanations improve students’ trust in the
system, and lead to students being more willing to accept recommendations. We
also found that students’ personality traits can influence their interactions with
explanations and perceived benefits, so there is a need for personalisation based
on these traits. Finally, we conclude that students are particularly interested in
information that helps them apply what they learn from explanations.

In future work we will conduct a larger study for more insight into students’
experiences with XAI in ITSs, and evaluate adaptive explanations.
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Abstract. MedDbriefer is aweb based ITS designed to enable healthcare students
to do clinical scenarios anytime, anywhere. While one student “voice treats” a
scenario’s patient(s) as the leader of a mock Emergency Medical Services (EMS)
team, a peer records the team’s actions by using the system’s checklists, on a
tablet. When the scenario ends, MedDbriefer analyzes the event log and generates
a debriefing. MedDbriefer also provides a platform for research on simulation-
based training. This paper describes how the system’s debriefing engine could
be extended to deliver feedback during a scenario, as well as afterwards. Med-
Dbriefer could then be used to compare the effectiveness of different ways of
timing feedback delivery in computer-based simulation systems.

Keywords: Automated debriefing · Computer-based simulation systems · EMS
training · Feedback ·MedDbriefer ·Microdebriefing · Peer-to-peer simulation

1 Introduction

Computer-based simulation systems allow students to gain supplemental practice outside
of their courses’ regular simulation-based training (SBT) labs and receive personalized
feedback from the automated tutor. Although extensive research has shown that feedback
is one of the most critical components of SBT, little is known about how to deliver
effective feedback during live or automated simulation exercises [1–4].

In automated simulation systems designed for healthcare provider training, feed-
back is typically deferred until a debriefing, after a clinical scenario ends. Post-scenario
debriefings typically present a step-by-step replay of students’ actions, as illustrated in
tutoring systems such as the American Heart Association’s Heartcode BLS and Heart-
code ALS, and Wolters Kluwer’s VSim for Nursing [5, 6]. Some human SBT instructors
also avoid giving feedback during a scenario, except when students stray far off the path
to a successful solution [e.g., 7]. This approach to timing feedback delivery prevents
the cognitive overload that can result from students having to shift attention between a
scenario (or other simulation exercise) and the instructor’s feedback, preserves scenario
realism, and provides opportunities for students to experience “productive struggle” and
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self-regulate [e.g., 3, 8] However, several simulation scholars have advocated replac-
ing post-scenario debriefings with within-scenario debriefings—that is, brief pauses to
a scenario to address errors or prompt students to reflect on their performance so far.1

Compared with post-scenario debriefings, within-scenario debriefings position feedback
closer to the context in which errors occurred, prevent the frustration that can stem from
realizing that the scenario’s patient is not improving, and reduce the chance that persistent
errors become cognitively ingrained [e.g., 7, 8, 9].

Our observations of human instructor guided scenarios for training emergency med-
ical services (EMS) providers revealed that instructors typically take a hybrid app-
roach, parceling feedback between brief within-scenario debriefings and a post-scenario
debriefing. In future work, we plan to compare alternative ways of timing the delivery
of feedback, to determine which approach, if any, predicts better learning outcomes
in a computer-based simulation system. MedDbriefer, a web based ITS that supports
peer-to-peer simulation, will serve as the research platform for these studies [10–12].

After presenting an overview of MedDbriefer, this paper illustrates distributed feed-
back during human facilitated simulation. It then describes how MedDbriefer analyzes
simulation logs to generate post-scenario debriefings, and how this approach could be
leveraged to provide within-scenario and distributed debriefings.

2 MedDbriefer

Fig. 1. MedDbriefer in use. Paramedic student (at left) treats a simulated patient while peer (at
right) uses MedDbriefer’s checklists to log actions.

1 Within-scenario debriefings are alternatively called “microdebriefings,” “reflective pauses,”
“stop-and-go debriefings,” among other terms.
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Students who struggle to acquire clinical skills often benefit from supplemental
simulation practice, outside of their regular SBT labs. Unfortunately, programs across
healthcare specialties face a shortage of simulation instructors [e.g., 13]. To address this
problem,many instructors encourage students to get togetherwith peers and practice sce-
narios. However, left unguided, peer-to-peer simulation often deteriorates, emblemizing
“the blind leading the blind” [14].

When fully developed MedDbriefer will enable pairs or small groups of paramedic
trainees to engage in clinical scenarios on their own—anytime, anywhere. While one
student “voice treats” a virtual patient as the leader of a mock EMS team, a peer uses
the system on a tablet to log the team leader’s verbalized actions, by selecting these
actions from the interface’s checklists. (See Figs. 1–2.) After the scenario ends, the
system analyzes the event log and generates a debriefing. In a randomized trial that
is nearing completion, we used MedDbriefer to compare two ways to structure post-
scenario debriefings [10, 12]. Table 1 illustrates the traditional approach: a chronological
replay of students’ scenario actions, with feedback.

MedDbriefer implements several affordances to foster beneficial interaction between
the student who voice treats the simulated patient (the “EMS team leader”) and a peer
who uses the tablet to log the team’s actions (the “observer”). As shown in Fig. 2,
MedDbriefer’s observer interface (OI) provides two main checklists: an assessment
checklist (Fig. 2, left) and an intervention checklist (Fig. 2, right). When the observer
checks an assessment action, the system displays a finding to call out. The observer
does not need to invent a finding that is realistic and accurate. For example, if the team
leader states that he is checking breathing quality, the observer may be cued to call
out “gurgling,” as highlighted in yellow in Fig. 2. Similarly, the intervention checklist
includes routine actions that EMS providers perform, such as ventilating a patient and
securing a patient onto a spinal board. Interspersed throughout this menu are prompts
for the observer to issue if the team leader fails to provide sufficient detail about how
he would perform an intervention. For example, Fig. 2 (right) displays a respiratory
intervention, bag-valve mask ventilation, with questions the observer should ask if the
team leader doesn’t specify the ventilation rate, oxygen flow rate, etc.

Providing feedback during a post-scenario debriefing is MedDbriefer’s most impor-
tant affordance. Immediately after the observer clicks on the Done button, the system
analyzes the event log to generate a debriefing (e.g., Table 1), as described presently
(Sect. 4.1). Ultimately, MedDbriefer could be scaled to support peer-to-peer simulation
in other areas of healthcare education, such as physician and nurse training.

3 An Example of Distributed Feedback

Table 2 shows excerpts of distributed feedback that took place during a live, human
instructor guided paramedic training scenario. At the start of the scenario, the instructor
(simulation facilitator, abbreviated “Fac” in Table 2) stated the dispatch information:

You are dispatched to a 26-year-old female having trouble breathing. She’s at a bus
terminal, sitting on the curb.

The facilitator paused the scenario several times to achieve an overarching goal:
to get the team leader (abbreviated “TL” in Table 2) to do a more thorough patient
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Fig. 2. MedDbriefer’s observer interface.

assessment before settling on a diagnosis—specifically, to understand why the patient
is in respiratory distress. Through within-scenario debriefings, often extended during
the post-scenario debriefing, the instructor addressed a common problem in healthcare
education: premature closure, aka “jumping to conclusions” [e.g., 15]. Especially when
patients present with medical conditions, as opposed to physical injury, paramedics must
gather enough evidence to determine which of several possible conditions is the most
likely cause of ambiguous symptoms like “difficulty breathing,” so that they can manage
the patient appropriately until they arrive at a definitive care facility.

During the scenario excerpted in Table 2, the team leader suspected early on that the
patient was suffering from a pulmonary embolism (PE) (e.g., Pause 2, turn 7), which
is a clot that blocks blood flow to an artery in a lung. Although the student happened
to be correct in this case, the facilitator was not happy with the process by which the
student reached this diagnosis. The student had gathered other findings besides difficulty
breathing that could indicate aPE such as chest pain, lowbloodpressure, andpoor oxygen
saturation (not shown in Table 2). However, a similar cluster of findings could indicate
a cardiac issue, including a heart attack. At each pause in the scenario, the instructor
prodded students to gather more evidence, to rule out other possible conditions and
strengthen the team leader’s proposed diagnosis (i.e., a PE).

Errors trigger within-scenario pauses. For example, Pause 1 in Table 2 is triggered
by the team leader’s failure to take a patient history after administering oxygen and
realizing that the patient still had difficulty breathing (i.e., SAMPLE and OPQRST
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Table 1. Excerpt from a MedDbriefer post-scenario debriefing on a child near-drowning

ID
Action description Feedback

15
Performed bag-valve 

mask ventilation.
Purpose: Oxygena on
Oxygen flow rate: 15 li-
ters/min or greater
Target O2 satura on 
rate: 95-99%
Ven la on rate: 10-12 
BPM

Incorrectly administered intervention. You were in-
correct about ventilation rate. This patient should 
have been ventilated at a rate of 20 breaths per mi-
nute, which is the recommended rate for a child aged 
2-12. When performing BVM ventilation, you use 
15LPM O2 to both oxygenate and ventilate the pa-
tient to a target SpO2 >90%.

16
Checked skin condi-

tion (moisture).
Found: Wet

17
Performed a gross 

blood sweep.
Found: No major external 
bleeding

Missing assessment step. A gross blood sweep (neg-
ative in this patient) will help you identify any life-
threatening bleeding you may have missed earlier 
when forming your general impression.

18
Checked skin color.

Found: Cyanosed
19

Which pulse?
Pulse to check: caro d and 
radial

20
Checked pulse rate.

Found: Slow

Mistimed assessment step. All unconscious patients 
should have a pulse check before starting the ABCs. 
However, paramedics often check breathing while 
doing a pulse check. If the patient is pulseless, you 
will start high-quality CPR immediately…

history, referred to in turn 5).2 Findings gathered from history taking would strengthen
or weaken the likelihood of a PE. Continuing in the same vein, Pause 2 is triggered by
TL’s failure to ask focused questions that would reveal more about the possible causes
of the patient’s “breathing problem” (turn 8). Similarly, Pause 3 (turns 9–17) is triggered
by the student’s failure to inquire about other telltale factors that could lead to a PE, such
as being a smoker and/or sedentary for considerable time.

During the post-scenario debriefing, the facilitator clarified why he prodded the team
leader to “ask all those questions” (turn 19): because the patient could be experiencing
a “STEMI” (i.e., an “ST-Elevation Myocardial Infarction,” aka a “heart attack”), not a

2 SAMPLE and OPQRST are acronyms for history-taking questions; for example, S =
Signs/Symptoms; A = known Allergies; M = Medications; O = Onset of pain; P =
Palliation/Provocation (i.e., what makes the pain better/worse?).
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Table 2. Example of distributed debriefing during a human facilitated scenario

Pause# (elapsed time in
minutes)

Within-scenario Debriefings Excerpts from the post-scenario
debriefing that extend
within-scenario debriefings

1 (~12:00) 1. Fac: OK; let’s stop. What else
do you know about her?

2. TL: She’s a 26-year-old female
3. Fac: OK. What else do you

know?
4. TL: Nothing
5. Fac: What about SAMPLE,

OPQRST?

18. TL: I didn’t think it was a
cardiac problem once I put her
on the monitor…

19. Fac: Don’t females have
them…especially if they’re
pregnant, diabetic, blah blah
blah, right?…That’s why you
need to ask all those
questions. She could be
having a STEMI2 (~15:00) 6. Fac: So, let’s pause again.

What’s the problem? Why are
we here?

7. TL: Shortness of breath. I
think she might have a PE

8. Fac: But is it a breathing
problem? Does she have a
cough? Cold? Is the cold
productive? Does she smoke?
You know…think of all the
breathing questions. When you
have belly pain it’s all the belly
questions…

3 (~19:00) 9. Fac: What’s going on?
10. TL: I think she has a PE
11. Fac: Why?
12. TL: Pleuritic chest pain on

one side. She’s on birth
control

13. Fac: There’s many people
that have pleuritic chest pain.
Maybe she lifted an air
conditioner yesterday…What
else do you know about her?

14. TL: Shortness of breath. Are
you a smoker?

15. Patient: yes…
16. Fac: Where is she?
17. TL: Bus terminal…She’s

been sitting for a long time.
That’s a contributing factor
for an expected PE

20. Fac: Ok…She’s 26, she’s on
birth control, she’s been
sedentary for a couple of
days. She smokes. She does
have the pleuritic chest pain.
She’s a little bit tachycardic,
her oxygen saturations are
low. Is that a much better
story for a PE?… Like you hit
PE super early on, but you
didn’t know why PE. You had
like, it was a little piece of the
puzzle it was a good guess…I
think you did a really good
job. You got to the point
where you went from a guess
to an educated informed,
medical—I think they call it a
“differential diagnosis” or
something; a field impression

PE. As stated in turn 20, the facilitator tried to steer students from taking a “shot in the
dark” (guess) towards deriving an “informed, medical…differential diagnosis.”

4 Towards Automated Distributed Feedback in MedDbriefer

MedDbriefer analyzes the entire event log after a scenario ends in three phases to generate
a debriefing (e.g., Table 1). This section summarizes the log analysis process (Sect. 4.1;
see [11] for more detail) and how it could be leveraged to implement within-scenario and
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distributed feedback (Sect. 4.2). In essence, instead of analyzing the entire log at the end
of a scenario, the system would analyze the log dynamically, at selected “checkpoints,”
pausing to provide feedback on students’ performance between checkpoints. Examples
in this section refer to the near-drowning scenario associatedwith the interface screenshot
shown in Fig. 2 and the debriefing excerpt shown in Table 1. The scenario starts when
the observer reads the dispatch information:

You and your partner are working in a suburban EMS service. You are dispatched
to a single-family home for a child drowning. It is 19:30 h and the air temperature is 87
°F. From the scene you are 11 min to a level 2 trauma center and 16 min by air to a level
1 pediatric trauma center.

4.1 How MedDbriefer Generates Post-scenario Debriefings

In addition to the scenario event log (EL), each analysis phase uses two other types of
data: the assessment hierarchy (AH) and the management hierarchy (MH). The AH is
a downward branching tree whose parent node is the goal of completing a full patient
assessment and branches are assessment phases and subphases. Figure 2 (left) shows the
top two levels of the assessment hierarchy. Lower levels are displayed when the observer
selects a menu item. For example, Fig. 2 shows the checklist that would appear when
the observer selects Breathing in the Primary Survey menu.

Like the assessment hierarchy, the management hierarchy is a downward branching
tree whose parent node is the goal of managing the clinical problems identified during
patient assessment, children are separate problems (e.g., severe bleeding, hypovolemic
shock), and grandchildren are interventions necessary to address these problems, includ-
ing appropriate alternatives. For example, in the near-drowning scenario, the main man-
agement goals are to control the patient’s obstructed airway and compromised breathing.
Managing the child’s airway requires suctioning and, eventually, intubation.

Analysis Phase 1: Interpreting the Event Log. During the first phase of analy-
sis, observed events in the EL are interpreted by comparing them to two models: the
expected patient assessment actions specified in the AH and solutions to clinical prob-
lems specified by domain experts, represented in the MH. In addition, the system scores
any responses to the observer’s requests for additional details (e.g., Table 1, ID 15).
Interventions (the leaf nodes) in the MH, are designated as either “required” or “option-
al” and there may be more than one acceptable alternative for required interventions.
Interventions that are not part of any solution are designated as “not indicated.”

There is usually a simple one-to-one mapping between assessment actions in the EL
and the AH, and between interventions in the EL and the lowest levels and leaf nodes in
the MH. The analysis system picks the solution path that best fits the EL. By associating
events in the EL with items in the AH and the MH, the system gains knowledge about
the possible role of each event, such as what to expect some time before or after a
particular event and the purpose of that event. This information facilitates recognition
of assessment sections and management goals that may not have been completed during
one contiguous time frame—for example, the student interrupted an assessment section
to start a different one and returned to the interrupted section later. It is also used as part
of checking temporal constraints in the second analysis phase and organizing the final
debriefing presentation in the third phase, as described presently.
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The AI in Analysis Phase 1 is this matching process—a search to find the solution
path that best explains the events logged. Similar approaches have been used in other
intelligent tutoring systems [16, 17]—that is, generate solutions and do plan recognition
by matching observations of what the student did to possible solutions [18].

Analysis Phase 2: Applying temporal constraints. Some interventions must be per-
formed in an expected order to be effective, whereas timing is less critical for other
interventions. For example, in the near-drowning scenario, it is important to suction the
child’s airway to clear it before oxygenating and ventilating him. We represent temporal
constraints as decision rules and use these rules to assess the ordering of actions recorded
in the EL. For example, Table 1 (ID 20) illustrates a temporal constraint violation. The
student checked the unconscious patient’s pulse late. Temporal representations and con-
straints, and constraints in general, are part of problem solving and plan recognition and
thus are important in reasoning [e.g., 19, 20].

Analysis Phase 3: Identifying and Marking Missing Actions. In the final phase of
analysis, missing actions are identified and inserted in the section of the annotated EL
in which they best fit and are assigned a status of “missing.” The suggested orderings
implied by the AH and MH are utilized so that missing actions are inserted in the
annotated log where they are inferred to be most appropriate. The insertion heuristic
first tries to locate other events related to the same assessment phase or management
goal and inserts the missing one relative to the ordering specified in the AH or MH. If a
management goal ismissing entirely from the student’s solution, themissing intervention
is inserted at the end of the assessment section in which the MH indicated it should
appear. For example, if the student doesn’t check the patient’s pulse at all, as opposed
to checking it late, “checks pulse” would be inserted in the Primary Survey/Circulation
section of the debriefing narrative and tagged as a “missing assessment step,” with a red
X (e.g., Table 1, line 17). Missing interventions are likewise identified and inserted into
the annotated debriefing based on the solutions specified for their management goal in
the MH and relative to where they best fit in the student’s solution (the EL).

4.2 Adapting the Log Analysis System to Vary the Timing of Feedback

Most complex tasks can be divided into subtasks, each with a goal, possible subgoals,
and actions to achieve these (sub)goals. For example, the assessment hierarchy shown in
Fig. 2 (left) represents the goal structure for managing a trauma patient during prehospi-
tal emergency care. Its subtasks include performing a Primary Survey, History Taking,
Secondary Survey, etc., referred to herein as “assessment phases.” Phases can be subdi-
vided into subphases and their associated actions—for example, Check Breathing is a
subphase of the Primary Survey, whose leaf node actions include checking the patient’s
breathing rate, rhythm, and quality (Fig. 2, center).

This hierarchical goal structure can be used to specify when an automated simulation
system should initiate within-scenario debriefings. Transitions between scenario phases
offer natural assessment “checkpoints”—for example, when the student shifts focus
away from the Primary Survey. As illustrated in the examples discussed previously
(Tables 1–2), students often leave a phase prematurely, before conducting all necessary
assessment actions and interventions. MedDbriefer’s log analysis system can detect
phase transitions because each assessment action is associated with only one phase
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or subphase. For example, if the student had been performing actions that belong to
the Primary Survey’s branch of the AH and then performs actions that belong to the
Secondary Survey’s branch (e.g., checking the patient’s abdomen for distension), the
system can infer that the student considers the Primary Survey completed (although it
may not be), analyze the event log segment that includes Primary Survey actions, and
initiate a within-scenario debriefing if it detects errors.

MedDbriefer’s log analysis system could be modified to enable it to dynamically
apply similar rules and procedures to the log segment that corresponds to a phase that
the student has shifted focus away from (perhaps prematurely) as the system currently
uses to retrospectively analyze the entire log, as described in Sect. 4.1. Specifically, the
systemwould compare the student’s plan for the corresponding (sub)phasewith an expert
plan for that (sub)phase, searching for missing actions, temporal constraint violations,
and incorrectly performed interventions (e.g., see Table 1). User testing will enable us
to determine what adjustments to the current log analysis procedure, additional decision
rules, etc. are needed to generate within-scenario debriefings.

In future randomized trials, we plan to compare different ways of timing feedback
delivery in MedDbriefer, keeping feedback content constant across conditions. At this
writing, we are examining our corpus of human facilitated EMS scenarios to gain insight
into the types of errors that trigger within-scenario debriefings and how experienced sim-
ulation facilitators parcel feedback between these discussions and post-scenario debrief-
ings. To our knowledge, these questions have not yet been investigated. Initial corpus
analysis suggests that facilitators tend to keep within-scenario pauses brief, focused on
keeping students on track towards a successful solution (e.g., Table 2). For example,
instead of addressing every assessment action that a team leader skipped, human facili-
tators tend to focus on those that would have yielded significant findings in the current
scenario (e.g., checking the patient’s pulse would have indicated an abnormal heart
rate). Similarly, facilitators focus feedback on missing critical, life-saving interventions,
not less critical interventions (e.g., dressing minor wounds). We plan to emulate this
“focused feedback” behavior in MedDbriefer. Ultimately, a more adaptive system will
assess students’ performance and gradually address less critical errors after the student
consistently and correctly performs critical interventions.

To keep within-scenario debriefings as brief as possible and encourage student self-
regulation, we plan to have the system issue feedback in increasingly directive doses.
For example, if the log analysis system detects that a student left the Primary Survey
prematurely—such as advancing to the Secondary Survey without first managing the
patient’s difficulty breathing—the observer would be cued to click on the Feedback
button. This would invoke audio-recorded feedback, to preserve the peer observer’s
role as a simulation assistant, not an instructor. Initial feedback would offer a high-
level reminder of what the Primary Survey entails, for example: “Make sure that you
have fully assessed the patient’s airway, breathing, and circulation and managed any
problems before you move onto the focused, Secondary Survey.” If the student then
checks breathing but does not oxygenate and ventilate the patient, the next level of
feedback would prompt the student to interpret his findings, as the facilitator does in the
example shown in Table 2 (lines 1 and 3), for example: “What do you know about this
patient?” If the student still does not manage the patient’s breathing, the system would
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interpret significant findings and tell the student what to do but not how to do it, for
example: “You checked the patient’s breathing and found it to be slow, with gurgling.
You should manage his breathing.” Finally, if the student still does not ventilate and
oxygenate the patient, feedback would specify what the student should do, for example:
“The patient’s bradypnea [slow breath rate] and gurgling should have prompted you to
administer oxygen and performbag-valvemask ventilation, or another type of ventilatory
support. Perform BVM ventilation with high flow oxygen at this time.”

In a randomized trial to compare the effectiveness of within-scenario debriefing,
post-scenario debriefing, and distributed debriefing, thewithin-scenario conditionwould
present increasingly directive feedback, as illustrated in the previous paragraph. Some
within-scenario debriefings might elaborate on this basic feedback. Referring to the pre-
vious example, a possible elaboration would be: “Always check BVM compliance. If
relevant vital signs do not improve or ventilations do not seem to be working, reassess
the patient’s head position (nose tilted upright), body position (thorax elevated) and
ensure a proper BVM seal.” The distributed debriefing conditionwould provide the same
increasingly directive feedback as within-scenario debriefings but defer any elaboration
until the post-scenario debriefing. The post-scenario debriefing condition would sum-
marize the information that unfolds through the within-scenario sequence and include
any elaborated feedback, entirely after the scenario ends.

5 Conclusion

The debate concerning the timing of feedback delivery during simulation-based training
echoes the well-documented, unresolved problem in instructional science known as the
assistance dilemma: “…how, when, and if support should be given to learners during
training” [8, p. 442]. Most research on feedback timing during simulation focuses on
technical skills training (i.e., procedural, motor, and psychomotor skills) [e.g., 3, 4, 8,
21]. Studies typically compare the effectiveness of concurrent feedback versus terminal
feedback for initial skill acquisition and retention. Concurrent feedback takes placewhile
a task or action is in progress, while terminal feedback takes place after a task/action,
with variable delay. Due to mixed results, these studies have yielded few guidelines on
timing feedback delivery for technical skills training [4]. Nonetheless, they are important
for having uncovered factors that can moderate the effectiveness of feedback delivery,
such as skill level, type of feedback (e.g., outcome vs. process), training context, and
outcome measures (e.g., user acceptance vs. performance gains).

In contrast to the abundant research on feedback for technical skills training, few
studies have investigated feedback timing in scenario-based training [9]. Scenarios chal-
lenge students to apply technical and non-technical skills (e.g., clinical decision mak-
ing and team coordination). Echoing the distinction between concurrent and terminal
feedback, two studies compared within-scenario with post-scenario debriefings during
human guided clinical simulations [7, 9]. Their primary aim was to test the common
belief that students would find within-scenario feedback disruptive. Both studies found
no between-condition differences for user satisfaction, as measured by survey. Unfortu-
nately, due to methodological limitations that the study authors acknowledge (e.g., lack
of an objective measure of learning in [7]; lack of a baseline measure of performance in
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[9]), these studies do not indicate whether within-scenario or post-scenario debriefings
aremore effective for improving students’ clinical knowledge and scenario performance,
regarding technical and non-technical skills.

To our knowledge, no research to date has examined the effectiveness of distributing
feedback across within-scenario and post-scenario debriefings, which we observed to be
the norm for human facilitated EMS training scenarios (e.g., Table 2). Future research is
needed to compare alternative ways of timing feedback delivery during scenario-based
training in various domains—that is, within-scenario, post-scenario, and/or distributed
debriefings. These studies should investigate gains in students’ knowledge, technical
and non-technical skills, as well as user satisfaction. We expect that findings will be
moderated by the same factors that moderate the effectiveness of feedback timing for
technical skills training. This paper and our prior work [e.g., 10] illustrate how computer-
based simulation systems likeMedDbriefer can serve as a research platform to investigate
feedback delivery and other aspects of simulation-based training.

Acknowledgements. This research is supported by grant 2016018 from the National Science
Foundation. The ideas and opinions expressed are those of the authors and do not necessarily
represent the views of the NSF. We thank Audrey Aronis, John Gallagher, Priya Gupta, Karen
Kornblum, EmilyMiller, Lily Nong, Collin O’Connor, ErinO’Meara, Thomas Platt, Stuart Prunty,
Samuel Seitz, Emma Sennott, Keith Singleton, Zachary Smith, Marideth Tokarsky, Jingyi Xiong,
and Tiffany Yang for their contributions.

References

1. Cook, D.A., et al.: Technology-enhanced simulation for health professions education: a sys-
tematic review and meta-analysis. JAMA 306(9), 978–988 (2011). https://doi.org/10.1001/
jama.2011.1234

2. Cheng, A., et al.: Debriefing: the state of the art and science in healthcare simulation. In:
Healthcare SimulationEducation: Evidence, Theory andPractice, pp. 158–164 (2017). https://
doi.org/10.1002/9781119061656.ch21

3. Hatala, R., et al.: Feedback for simulation-based procedural skills training: a meta-analysis
and critical narrative synthesis. Adv. Health Sci. Educ. 19(2), 251–272 (2014). https://doi.
org/10.1007/s10459-013-9462-8

4. Wijewickrema, S., et al.: Feedback techniques in computer-based simulation training: a
survey. arXiv preprint arXiv:1705.04683 (2017). https://doi.org/10.48550/arXiv.1705.04683

5. Oermann, M.H., et al.: Advantages and barriers to use of HeartCode BLS with voice advisory
manikins for teaching nursing students. Int. J. Nurs. Educ. Sch. 7(1) (2010). https://doi.org/
10.2202/1548-923X.1949

6. Oermann, M.H., et al.: HeartCode BLS with voice assisted manikin for teaching nursing
students: preliminary results. Nurs. Educ. Perspect. 31(5), 303–308 (2010). https://pubmed.
ncbi.nlm.nih.gov/21086869/. PMID: 21086869

7. Van Heukelom, J.N., Begaz, T., Treat, R.: Comparison of post simulation debriefing versus
in-simulation debriefing in medical simulation. Simul. Healthcare 5(2), 91–97 (2010). https://
doi.org/10.1097/SIH.0b013e3181be0d17

8. Tullis, J.G., Goldstone, R.L., Hanson, A.J.: Scheduling scaffolding: the extent and arrange-
ment of assistance during training impacts test performance. J. Mot. Behav. 47(5), 442–452
(2015). https://doi.org/10.1080/00222895.2015.1008686

https://doi.org/10.1001/jama.2011.1234
https://doi.org/10.1002/9781119061656.ch21
https://doi.org/10.1007/s10459-013-9462-8
https://doi.org/10.48550/arXiv.1705.04683
https://doi.org/10.2202/1548-923X.1949
https://pubmed.ncbi.nlm.nih.gov/21086869/
https://doi.org/10.1097/SIH.0b013e3181be0d17
https://doi.org/10.1080/00222895.2015.1008686


Implementing Distributed Feedback in a Tool that Supports Peer-to-Peer Simulation 311

9. Schober, P., et al.: Effects of post-scenario debriefing versus stop-and-go debriefing inmedical
simulation training on skill acquisition and learning experience: a randomized controlled trial.
BMC Med. Educ. 19(1), 1–7 (2019). https://doi.org/10.1186/s12909-019-1772-y

10. Katz, S., et al.: MedDbriefer: a debriefing research platform and tool to support peer-led
simulation-based training in healthcare. In: Proceedings of the 17th International Conference
of the Learning Sciences—ICLS (2023). https://par.nsf.gov/biblio/10443688

11. Katz, S., et al.: Debriefings on prehospital care scenarios in MedDbriefer—a tool to support
peer learning. In: Kabassi, K., Mylonas, P., Caro, J. (eds) NiDS 2023. LNNS, vol. 783,
pp. 102–113. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44097-7_10

12. Katz, S., et al.: Comparing alternative approaches to debriefing in a tool to support peer-led
simulation-based training. In: Crossley, S., Popescu, E. (eds.) ITS 2022. LNCS, vol. 13284,
pp. 88–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09680-8_8

13. McKenna,K.D., et al.: Simulationuse in paramedic education research (SUPER): a descriptive
study. Prehosp. Emerg. Care 19(3), 432–440 (2015). https://doi.org/10.3109/10903127.2014.
995845

14. Haraldseid, C., Aase, K.: Variability among groups of nursing students’ utilization of a tech-
nological learning tool for clinical skills training: an observational study. J. Nurs. Educ. Pract.
7(7), 66–76 (2017). https://doi.org/10.5430/jnep.v7n7p66

15. Rencic, J., Trowbridge Jr., R.L., Fagan, M., Szauter, K., Durning, S.: Clinical reasoning
education at USmedical schools: results from a national survey of internal medicine clerkship
directors. J. Gen. Intern. Med. 32(11), 1242–1246 (2017). https://doi.org/10.1007/s11606-
017-4159-y. Epub 2017 Aug 24. PMID: 28840454; PMCID: PMC5653563

16. Koedinger, K.R., Corbett, A.: Cognitive tutors: technology bringing learning sciences to
the classroom. In: Sawyer, R.K. (ed.) The Cambridge Handbook of: The Learning Sciences,
pp. 61–77. CambridgeUniversity Press (2006). https://www.researchgate.net/publication/255
519934_Cognitive_Tutors_Technology_Bringing_Learning_Science_to_the_Classroom

17. Chu, Y.-S., et al.: Implementation of a model-tracing-based learning diagnosis system to
promote elementary students’ learning inmathematics. J. Educ. Technol. Soc. 17(2), 347–357
(2014). https://www.jstor.org/stable/jeductechsoci.17.2.347

18. Carberry, S.: Techniques for plan recognition. User Model. User-Adap. Inter. 11, 31–48
(2001). https://doi.org/10.1023/A:1011118925938

19. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–154 (1984).
https://doi.org/10.1016/0004-3702(84)90008-0

20. Köckemann, U., Karlsson, L.: Configuration planning with temporal constraints. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence (2017). https://doi.org/10.1609/aaai.
v31i1.11186

21. Cheng, A., et al.: Debriefing for technology-enhanced simulation: a systematic review and
meta-analysis. Med. Educ. 48(7), 657–666 (2014). https://doi.org/10.1111/medu.12432

https://doi.org/10.1186/s12909-019-1772-y
https://par.nsf.gov/biblio/10443688
https://doi.org/10.1007/978-3-031-44097-7_10
https://doi.org/10.1007/978-3-031-09680-8_8
https://doi.org/10.3109/10903127.2014.995845
https://doi.org/10.5430/jnep.v7n7p66
https://doi.org/10.1007/s11606-017-4159-y
https://www.researchgate.net/publication/255519934_Cognitive_Tutors_Technology_Bringing_Learning_Science_to_the_Classroom
https://www.jstor.org/stable/jeductechsoci.17.2.347
https://doi.org/10.1023/A:1011118925938
https://doi.org/10.1016/0004-3702(84)90008-0
https://doi.org/10.1609/aaai.v31i1.11186
https://doi.org/10.1111/medu.12432


Keeping Humans in the Loop: LLM
Supported Oral Examinations

Ansgar Fehnker(B) and Luke Glover

Macquarie University, Sydney, Australia

ansgar.fehnker@mq.edu.au

Abstract. This paper investigates the use of generative AI to pre-
pare oral examinations. The aim is to support oral exams regardless
of whether the student uses generative AI. Oral exams have long been
viewed as inefficient, subjective, or unfair. Generative AI has the poten-
tial to mitigate some of these concerns. This paper reports on a proto-
type developed to prepare vivas for essays in software engineering. This
position paper discusses underlying principles, a proposed design and
workflow, as well as limitations on both the technology and its use.

Keywords: Large-Language-Models · examinations · oral · essays

1 Introduction

Oral examinations, often called viva or viva voce, are widely used for assessment
in various educational settings such as lab sessions, tutorials, doctoral defences,
and certification or bar exams. This paper examines vivas as supplements to
writing assessments, especially in technical degrees like software engineering.

Written assignments are significant in engineering education. Bushwell et al.
[2] found that 86% of engineering instructors incorporate writing assignments
to prepare students for writing in a professional context. The Seoul Accord
[14] emphasises graduates’ need to “communicate effectively with the comput-
ing community and with society at large about complex computing activities”.
Similarly, the SWEBOK v3.0 [1] underscores the importance of the ability to
generate written artefacts, including reports, documentation, and justifications.

Large language models (LLMs) can author human-like text on a wide range
of topics, including written assessments. In a 2023 survey, 30% of US col-
lege students reported using essay-generating software [3]. Educational insti-
tutions responded, from outright banning their use to accepting or even pro-
moting the responsible use of generative AI. The Australian government agency
TESQA, tasked with quality assurance in higher education, advises that trust-
worthy assessment will require assessments of different types [9]. Pearce and
Chiavaroli [13] suggest“rehabilitating” oral exams and vivas for this purpose.

This paper addresses the research question: How to build a system using gen-
erative AI to generate questions for vivas that supplement written assessments.
The paper will first discuss vivas as an assessment type, and large language mod-
els in Sect. 2, the design and implementation in Sect. 3, and observations from
experiments in Sect. 4.
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2 Preliminaries

Generative artificial intelligence is an umbrella term for AI systems capable of
creating content based on user prompts, such as images, audio, and text. Large
language model (LLM) is a similarly broad term for the application of large-
scale neural networks to natural language processing problems, encompassing
tasks from spelling and grammar correction to automatic sentiment analysis
and machine translation [11].

The release of OpenAI’s chatbot, powered by GPT-3.5 and GPT-4, showcased
their ability to perform on academic and professional exams, demonstrating high
accuracy and human-like responses. It was reported that GPT-4 was able to
perform within the 90th percentile of human test takers for several academic
and professional level exams including the Uniform Bar Exam, the Law School
Admission Test (LSAT), several Scholastic Aptitude Test (SAT) exams, and
several Advanced Placement (AP) exams [12]. The most commonly mentioned
risks include the production of offensive content, the reproduction of copyrighted
content, and the spread of false information [4]. OpenAI recommends avoiding
“high-stakes uses” of GPT4 altogether because of hallucinations [12,15].

Besides risks, the use of LLMs in education also offers opportunities. They
have been used, for example, to explain code snippets in detail [10], or to generate
quizzes and example problems based on existing educational material [8].

Oral examinations and vivas serve various purposes across different contexts.
Joughin outlined six key dimensions [6,7], which we’ll use to frame the intended
use of our prototype tool and inform its workflow.

Objective Within our setting, vivas aim to test knowledge of concepts, theories,
and procedures. Integrated practice plays some role, as practising engineers
must regularly orally explain written reports. Applied problem-solving plays
less of a role, as the problems were solved to write the essay. The viva will
not introduce new problems. The vivas will not explicitly assess interpersonal
competence, such as audience interaction, or intrapersonal competence, such
as resilience to stress.

Interaction While the vivas include an aspect of presentation – the student has
to present a response to the given questions – the intent is that the examiner
will use the answer for a dialogue.

Authenticity This dimension refers to whether the assessment emulates “real
life”. While practising graduates will have to explain their written work, as
mentioned before, it does usually not appear in a confined exam setting.

Structure The structure of the vivas that our prototype tool supports, is by
construction semi-structured. The tool will produce a set of pre-determined
and personalised questions. However, the examiner has the opportunity (and
the task) to follow up on the answer if necessary.

Examiners The examiners in the viva will be tutors, lecturers, or other autho-
rised assessors. While conceivable, the prototype is not targeted at self-
assessment or peer assessment.
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Orality The last dimension is orality. As mentioned, the prototype suggests viva
questions based on a written essay. This means that orality is secondary, while
the written document is the primary artefact of assessment.

The discussion so far does not address why vivas are increasingly used along-
side written assessments, especially in the context of generative AI. Pearce and
Chiavaroli, recommend viva to ensure the trustworthiness of written assessments
[13]. They differentiate between unassisted and assisted assessments. The for-
mer prohibits explicitly the use of (certain) external tools, while the second will
(explicitly) permit their use. For our prototype, we assume that an assignment
may be assisted (even if not explicitly stated) and that the focus is to assess the
student’s intellectual ownership of the written report.

Our goal is not to assess the complete depth of a student’s knowledge or
definitively prove the absence of external tools. Instead, we focus on evaluating
intellectual ownership – which should not be confused with intellectual property
– using three key criteria: (1) Familiarity : Is the student prepared and familiar
with the text as written? (2) Discussion Proficiency : Can the student engage
in a meaningful conversation about the concepts as presented in the essay? (3)
Critical Expansion: Can the student expand upon the essay’s content by explor-
ing related ideas and concepts? These criteria could be used as the rubric for
the viva, independent of the rubric used for grading the essay, which remains
the primary artefact of assessment.

3 Design and Implementation

The assumed workflow for the prototype is that all essays are first submitted and
downloaded by an assessor, who then uses the tool to generate viva questions
ahead of time in a printable format. We assume that the input files are either in
PDF or Microsoft Word format.

The application is designed to be modular and model-agnostic, providing
wrappers to handle different LLMs. We used GPT-3.5 from OpenAI, GPT-4
from OpenAI, and PaLM 2 from Alphabet (Google) in our application, but
others could be used as well. The prototype is a desktop application that uses
a bundled web browser for user interfacing, communicating with a back-end
component via HTTP. This means the application could potentially be adapted
to be a public web app given more development time and if such adaptation is
necessary.

All models distinguish between two types of input prompts. PaLM 2’s context
input and the GPT family’s system input perform the same function and are
intended to provide instructions that cannot be overridden by further instruc-
tions in the user or test input. While separating system from user input is con-
sidered best practice, there are reported instances where this protection fails. We
furthermore noticed that GPT-3.5 tends to ignore the system prompt in favour
of the user prompt. This led to the decision to use the GPT-3.5 user prompt for
both the instruction and the essay text itself.
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4 Experiments and Observations

The aim is to assess an essay with respect to generic criteria for intellectual
ownership, as described in Sect. 2. We developed a prompt that creates five
questions for a viva, independently from the rubric used for the essay, which will
be marked separately. This section illustrates the process using a student essay,
written by a student applying to enrol in a software engineering program.

The first prompt we tried was simply “Generate 5 questions about the
essay text.” which resulted for GPT3.5 in the suggested following questions:

1. What is the role of software engineering in the development of software?
2. Why is software engineering needed?
3. What is the author’s reason for applying to Georgia Tech’s Computer Science
program?
4. What is the field of study that the author finds most interesting within engi-
neering?
5. What are some of the skills and interests of the author in the field of Computer
Engineering?

The initial prompt was iteratively refined, based on the following observa-
tions: The question should address the author of the essay. Short and general
questions should be avoided, and the questions should refer to the text of the
essay. The question may use quotes to refer to the text, however, quoting phrases
with poor word choice or poor grammar should be avoided. The questions should
be pitched at different levels, from recall to further exploring ideas present in
the essay. This led to the prompt depicted in Table 1. Interestingly, the prompt
resembles instructions that could be given to a human examiner before a viva.

Table 2 depicts the questions generated for the sample essay. PaLM 2’s ques-
tions are simpler compared to those from the GPT models. Even the probing
question (Question 5) is superficial and ambiguous, referring to “your disci-
pline” without specifying old or new. Both GPT models outperform PaLM 2,
with GPT-4 producing more specific and tailored questions, even quoting from
the source text, unlike GPT-3.5, which struggles with accurate quoting.

While the ability to quote is useful to make questions more specific, we
noticed for one of the intermediate prompts, that GPT-4 selected the unusual
phrase “the body of the computer” several times. We are concerned that repeat-
ing a poorly worded phrase, especially in a quote-unquote style, may be inter-
preted as an attempt to hone in on a language error. It has been reported that
foreign language learners [5] show higher anxiety in an oral exam, and tools that
hone in on a mistake, may add to that anxiety.

The quality of the question seems to come with costs, as running all three
models will incur costs. Generating questions for a 2500-word essay, as for our
example, costs approximately USD 0.25 with GPT-4, but only USD 0.002 with
GPT-3.5. Google’s PaLM2, which charges per character instead of per token,
would charge approximately USD 0.04 per 2500-word essay. Pricing may vary
with new models and providers, but it’s crucial to consider the significant cost
differences between models.

https://papersowl.com/examples/why-i-chose-software-engineering/
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Table 1. Chosen System Prompt

Context: You are a tutor or teaching assistant for an

undergraduate software engineering course. Students are

required to submit written essays and then participate in a

face-to-face viva where their tutor discusses the essay.

Instruction: For the essay text, generate five (5) questions

that are 2 or 3 sentences in length for the author’s viva.

Use phrases such as ‘‘you mentioned’’, ‘‘where you said’’, or

‘‘in the section’’ to refer back to the essay text when

appropriate.

For some of the questions, when referring to a specific

statement in the essay text, directly quote it with quote

marks. Avoid quoting poorly worded phrases unless you are

specifically asking for clarification on the meaning of the

phrase. If you are not directly quoting the text, you can

reword ambiguous or poorly worded statements to make them

clearer.

Questions should gradually progress in difficulty from the

first to the last question. The first two questions (1 and 2)

should be easily answered by all students at a pass level and

require students to recall or clarify the content of the essay.

The third question (3) should be answerable for students at a

credit level and require students to explain in more detail a

point from the essay. The fourth question (4) should be

answerable by students at a distinction level and require the

student to significantly elaborate on a point made in the

essay. The final question (5) should be answerable by students

at a high distinction level, and require the student to explore

new ideas based on but not directly addressed in the essay.

5 Discussion

The previous sections described the nature of the viva and the technology used
to generate questions for three different LLMs. This section reflects on the effect
the prototype may have on the disadvantages and risks of vivas. It should be
noted that these are early observations, which should be further investigated
before such a tool is used at scale.

Wang discusses several shortcomings of vivas, among lack of reliability, stan-
dardisation and objectivity [16]. Using LLMs to generate questions mitigates
these concerns, as it will standardise how questions are generated. They will be
independent from one assessor to the next, or from how tired an assessor is.
However, LLMs will not address all concerns, as verbal cues, gender, intonation,
or gestures can still influence both the student and the assessor.

Using LLMs to prepare viva questions introduces also risks. The first is that
the tool may misunderstand parts of the essay, or create ambiguous questions.
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Table 2. Model responses for the sample software engineering essay

GPT-3.5

1. In the essay, you mentioned that software engineering provides a possibility to develop
software with less cost and more reliability. Can you explain how software engineering principles
contribute to achieving these goals?

2. You stated that you chose Computer Science as a major because you wanted to learn
machine learning and algorithms. Can you elaborate on how these areas are relevant to Com-
puter Engineering and how they can be applied in practice?

3. In the essay, you mentioned the importance of learning how to design memory chips and
hardware in Computer Engineering. Could you provide some examples of how this knowledge
can be applied in real-world scenarios and the impact it can have on the development of
computer systems?

4. You quoted a statistic from bls.gov about the growth rate of careers in Computer Engineer-
ing. How do you interpret this statistic in terms of job prospects and the future of the field?
What factors do you think contribute to this growth?

5. Towards the end of your essay, you discussed the importance of Cybersecurity and advanced
communications. Given the increasing prevalence of cyber threats, how do you envision the
role of a Computer Engineer evolving in the context of Cybersecurity? How can software
engineering principles be utilized to enhance Cybersecurity measures?

GPT-4

1. In the introduction, you mentioned that software engineering provides a possibility to develop
software with less cost and more reliability. Can you elaborate on how software engineering
principles contribute to this cost-effectiveness and reliability?

2. You mentioned that you chose Computer Science as a major because you wanted to learn
machine learning and algorithms. Can you explain how these two areas are integral to your
studies and future career in Computer Engineering?

3. In the section where you said, ”I find it important to learn how to design memory chips
and hardware in Computer Engineering”, could you explain why you believe this knowledge is
crucial and how it might be applied in real-world scenarios?

4. You quoted from bls.gov stating that the growth rate of careers in the field of Computer
Engineering is 6% from 2018 to 2028. How do you interpret this statistic in terms of job
opportunities and the future of the field? What factors do you think might be driving this
growth?

5. Towards the end of your essay, you touched on the importance of Cybersecurity and advanced
communications. Given the increasing prevalence of cyber threats, how do you see the role of
a Computer Engineer evolving in the context of Cybersecurity? How might the principles of
software engineering be applied to enhance Cybersecurity measures?

PaLM 2

1. You mentioned that software engineering is needed to provide a possibility to develop the
same software with less cost and more reliability. Can you give an example of a software
engineering principle that can be used to achieve this?

2. Why do you want to apply to Georgia Tech’s Computer Science program?

3. What are the goals of computer engineering?

4. What are some of the skills that you have that are matched with computer engineering?

5. What are some of the advances in technology in the last 5 years that have altered your
discipline?
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Although an LLM was used to create the question, the assessor still retains the
responsibility to check their validity.

Wang identified as a risk that assessors may focus on their preferred content
[16]. While the use of an LLM mitigates this risk, we now rely on the assessor
being able to assess any topic the LLM suggests. Assessors may be less accurate
when the LLM selects a topic that is not in their focus area.

Another risk is that LLMs may be unaware of social norms. We encountered
an example where the LLMs repeatedly quoted a language error, with the request
for clarification. This can be a legitimate question, but it can also be easily
misunderstood as unnecessarily confronting. A related risk, that needs to be
further evaluated, is that we have to ensure that the level of the questions is not
dependent on the quality of the writing, and whether grammar or word choice
influences the viva questions.

The prototype, coupled with human assessors, mitigates some risks by limit-
ing individual assessor influence while allowing assessors to counter LLM-related
risks. To do this effectively, assessors should be trained in the use of the tools,
and be made aware of their limitations and risks.

6 Conclusion

This paper presents a prototype tool that uses LLMs to prepare viva questions.
This tool is not just a response to the increased use of generative AI. The aim is
to mitigate risks of vivas, reducing the workload, while making the assessment
more personal and tailored to the student. This paper focuses on vivas that
supplement written essays and defines criteria that the viva aims to assess. It is
not a replacement for marking the essay itself, but a tool to assess intellectual
ownership as a supplementary viva.

The prototype currently exists as a desktop application but should be turned
into a web application for use in a variety of units. At present, the tool employs
a single generic prompt. Exploration of user-configurable prompts is planned,
with LLMs potentially generating prompts from assessment details, learning
outcomes, or model answers.

The current tool was developed for essays in the field of software engineering
and IT. An obvious future extension would be support for coding assessments.
Other uses may include combining it with invigilated written exams that ask
students to reflect on their essays given generated questions. The prototype
could also be used to prep students for vivas, to reduce exam anxiety, and as
another way to engage with the material.

It should also be noted that LLMs are a very dynamic field. The field of
prompt engineering is developing quickly, and the models used in this paper have
been superseded in the meantime. The preview of GPT4-turbo, for example, has
a larger token limit, allows fine-tuning, runs faster, and is cheaper than GPT-
4. It can return a seed, which makes it possible to run repeat experiments. The
upcoming developments and improvements, however, will not undermine the use
of LLMs in teaching; they will likely make the approach presented in this paper
more efficient and effective.
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Abstract. Personalized learning paths have become a promising instructional
strategy in online learning, as they can cater to individual learners’ needs and
preferences. However, creating effective personalized learning paths is a complex
task due to the high degree of variability in learners’ characteristics, behaviors, and
learning contexts. Existing recommendation methods do not adequately address
this challenge, as they do not work effectively in dynamic environments. This
paper tries to address this gap by proposing a personalized learning path rec-
ommendation system using a contextual multi-armed bandit approach to offer a
student an optimal learning sequence and provide the student with a modified
sequence when re-planning is required.

Keywords: Multi-Armed bandit (MAB) algorithms · knowledge components
(KC) · adaptive learning · exploration and exploitation · personalized learning

1 Introduction

The effectiveness of traditional one-size-fits-all approaches to course designing has been
a subject of debate due to their limited ability to address the diverse needs and interests
of learners. However, the advent of personalized learning has introduced a transforma-
tive paradigm that can tailors instruction to match the unique characteristics of each
learner. This approach acknowledges the inherent differences among learners, including
their backgrounds, learning strategies, and preferences, emphasizing the importance of
providing personalized learning paths to help them achieve their learning goalsmore effi-
ciently. Personalized learning involves the customization of learning trajectories, which
consist of carefully selected sequences of learning activities and resources, designed to
facilitate learners in attaining their specific educational goals [1].These tailored trajec-
tories act as individualized roadmaps, guiding learners through a set of activities that
have been specifically adapted to address their distinct needs and aspirations. Achieving
this level of customization in learning trajectories requires an in-depth understanding
of learners’ characteristics, encompassing their prior knowledge, areas of interest, and
preferred modalities of learning, in order to effectively improve the learning experience
and optimize learning outcomes[2].

Our research proposes a contextual multi-armed bandit (MAB) approach for person-
alized learning path recommendation in the domain of online education. The contextual
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bandits approach, also referred to as associative Reinforcement Learning[3], is an iter-
ative process. An agent at every time step receives a context vector generated by the
environment and selects an option from the set of choices (which are referred to as
“arm”). Each selected arm is associated with a stochastic reward that the environment
reveals to the agent. The primary objective is for the agent to optimize its acquired
rewards over the long term by leveraging the historical data of its previous actions.

We structure our paper into the following sections: Related Work (Sect. 2 to discuss
recent related research of personalized learning), Research Problem (Sect. 3 to define
a formalized research problem), Methodology (Sect. 4 to describe the methods in our
research), ProposedAlgorithm (Sect. 5 to propose algorithms), Experiment&Simulation
(Sect. 6), and Conclusion (Sect. 7).

2 Related Work

The field of personalized learning paths has been extensively researched in recent years.
Various approaches have been proposed to personalize learning paths based on individ-
ual learners’ characteristics, behaviors, and learning contexts. According to [4], those
approaches can be categorized into two main types: Course Generation and Course
Sequence. Course Generation (CG) approaches involve generating and recommending
the entire learning path to a user in a single recommendation. In this approach, the user
is presented with a complete set of learning content and activities to follow to learn a
course. The evaluation of the learning path effectiveness occurs only after the comple-
tion of the entire path, rather than at each step along the way. In CG approaches, Shi
et al.[5] proposed a graph traversal algorithm in their paper to generate all paths con-
sidering the students’ learning objectives and learning need and recommending the one
with the highest score. Niknam et al. [6] proposed Ant Colony Optimization algorithm,
combined with Fuzzy C-Mean Cluster algorithm to select a path for a cluster of learners
based on their prior knowledge. While Course Generation methods are commonly used
by researchers to generate personalized learning paths, they are associated with several
limitations. One of the major drawbacks of this approach is that it often fails to account
for changes that may occur during the learning process, such as a user’s evolving skills,
interests, or preferences. Consequently, learners may be at risk of receiving an inap-
propriate or unmanageable learning path, leading to inefficiencies or disengagement.
Another challenge is the potential for CG methods to become slow when presented with
a large amount of data, such as a high volume of learning objects or user profiles. This
sluggishness can negatively impact the user experience, as it may take too long to gen-
erate a personalized learning path or respond to the learner’s needs in a timely manner.
In contrast to the CG approach, Course Sequence (CS) methods suggest personalized
learning paths to users one step at a time, considering their current progress and perfor-
mance. This method allows for ongoing evaluation and adaptation of the learning path,
ensuring that users are not overwhelmed by information and can focus on mastering one
concept at a time. By dynamically adjusting the learning path as a user progresses, CS
methods are better able to accommodate changes in users’ performance and adapt to
their unique learning needs. Xu et al. [7] proposed Naïve Bayes algorithm, combined
with KNN to recommend an optimized learning objective to a student. Cai et al. [8]
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proposed a Reinforcement Learning based method, combined with Neural Network and
Knowledge Tracing Model (KTM) to recommend the most suitable learning path based
on the specific knowledge points and the individual learner’s needs throughout the entire
learning journey. The study of Cai et al. (2019), however, posts some limitations [8].
It does not address dependencies and constraints among learning modules. In addition,
the proposed method is not efficient in online learning, as the reinforcement-learning
model can only be trained after the training of the knowledge tracingmodel is completed.
Lastly, there is no handling of altering or adjusting the recommended learning path once
required.

Although the field of learning path personalization has seen significant attention from
researchers, a number of challenges and limitations still persist. First and foremost, it is
essential to consider the learners’ time constraints when designing personalized learning
paths. Time is a valuable resource for learners, and an effective learning path personal-
ization method should consider learners’ schedules to optimize their learning outcomes.
Another challenge in learning path personalization is scalability. Designing methods
that can handle large-scale datasets is a complex problem that has only been addressed
by a few studies in the literature. Scalability is critical to the success of personalized
learning, as the method must be able to efficiently process and respond to large amounts
of data to maintain learners’ engagement. In addition, learners’ profiles should be reg-
ularly updated to reflect changes in their responses and learning progress. This requires
the learning path personalization method to adapt to the learners’ changing needs and
provide them with the most appropriate learning content. Evaluation is also a significant
challenge in learning path personalization methods. The lack of a general evaluation
framework makes it difficult to compare different methods, and a reliable evaluation
framework should include guidelines for data sources and principles to ensure a consis-
tent and accurate evaluation. The ability to update the learning sequence actively and
dynamically, when one or more student’s surrounding factors alter is another challenge.
Finally, recommender systems play a crucial role in adaptive learning by predicting stu-
dent preferences. However, they face the exploration-exploitation dilemmawhenmaking
recommendations. They must balance exploiting their knowledge about the content cho-
sen by previous students with exploring new materials that may be better suited to the
current student’s needs.

Reinforcement learning (RL) has been utilized to create effective and adaptable
pedagogical policies. Recently, there has been a growing interest in the use of MAB
algorithms for adaptive learning. MAB algorithms fall under the broader category of RL
and are named after the problem faced by a gambler who must decide which arm of a
K-slot machine to pull in order to maximize their total reward in a series of trials. These
algorithms can navigate exploration-exploitation trade-offs and make sequential deci-
sions under uncertain conditions. They have been employed in real-world applications
to solve optimization problems, such as experimental design and website optimization.
As MAB algorithms actively select which data to receive and analyze in real-time, they
lend themselves naturally to the problem of eliciting adaptive sequences of content and
assessment in adaptive learning environments [9]. The multi-armed bandit framework
has the potential to address the challenge faced by many applications when no prior
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information is available, especially for large-scale recommender systems. Their contin-
uous exploration approach can also help address the cold start problem in recommender
systems.

Although some initial, isolated, or purely theoretical research has been conducted on
using MAB to elicit sequences for adaptive learning, there are still many questions that
need to be answered. For example, due to the complexity of adaptive learning, standard
MAB models cannot be directly applied. When an MAB-based adaptive engine makes
sequential decisions to optimize learning, how does it define rewards? Which metrics
should be optimized? Which algorithm of the MAB family in what parameter settings,
would be best for a particular sequencing problem in adaptive online learning?

To our knowledge, none of the proposed algorithms have adequately addressed the
challenges associated with the learning sequence recommendation problem. Another
consideration is the contextual bandit algorithm, which is an extension of the MAB
approach used to discover which actions are effective in specific contexts. Xu et al. [10]
used a contextual bandit approach to recommend entire sequences of courses within a
program, rather than sequencing knowledge components in an online course. In their
work, courses were planning elements with fixed completion times. The work did not
address knowledge component sequencing within individual courses. Additionally, after
recommending awhole sequence to complete a degree, the sequence could not be altered.
We recognize that one of the drawbacks of recommending an entire KC learning path to
a learner is that it ignores the learner’s actualized learning performance and the context
changes that occur during the learning process. As a result, the learner may waste time
by receiving a path that may not be optimal.

In the next section, we will formally define the research problem, followed by our
proposed methodology and algorithm.

3 Research Problems

MAB algorithm is a subset of RL algorithm, and contextual MAB (CMAB) is an exten-
sion of theMABapproachwhere environment contexts are factored in.MAB (orCMAB)
approach is different from the general RL approach in that MAB is for solving a state-
less Markov Decision Process (MDP) problem, where all the states (observations) are
independent, and the agent gets a reward immediately after choosing an action. In order
to fit the adaptive sequence learning problem into CMAB approach, we have the option
to follow the CG approach (i.e… Generate entire learning path). However, due to the
disadvantage of CG approach, we give favors to the CS approach. It is a challenge to
creatively model our problem to fit CMAB in the CS approach. Another challenge is
that even when our problem is well modelled, the standard CMAB approach does not
well support re-planning (i.e., the current recommended learning module failed to fit
a student’s current competency, and a new different learning module should be recom-
mended). For this challenge,Wacharanwan et al. in their research [11] proposed applying
correlation analysis in CMAB approach. It recommends the closest learning path having
the highest rank of correlation measurement. However, the approach is not effective as
the learning problem is non-stationary [11]. Before we discuss further, we first consider
how we are going to model our learning problem.
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There are many ways to model a modular content hierarchy. Duval and Hodgins
[12] introduced the content hierarchy consisting of 5 levels: Course, Lesson, Learning
Object, Raw Content, and Information Object. Nabizadeh et al. in their research paper
[4] suggested another level named Topic. Referencing these articles, we modeled our
knowledge domain into two levels: Course and Knowledge Component (KC). A course
is composed of a few learning units, each learning unit covers a concept. A KC is a
learning unit, and a Course is composed by few KCs. Some KCs are the prerequisites in
order to learn other KCs. Some KCs can be exchangeable or other KCs.

4 Methodologies

We can model a course domain as a KC AND-OR graph where each node in the graph
presents a knowledge component. A KCAND-OR graph represents the search space for
solving the problem in “Goal”. We can define the root node “Goal” as the initial problem
and every other node is a sub-problem.

Fig. 1. A KC AND-OR graph sample.

In Fig. 1, we use goal-reduction methods to break down the graph:

GOALif KC4andKC2

KC4if KC1orKC3

The KCs are modeled as a knowledge structure in Knowledge Space Theory (KST)
[13]. To this end, the domain experts first identify the set of KCs for a course. After that,
the domain experts specify the prerequisite relations among the KCs.

A learning path is also called a policy or a learning sequence. Formally, the set of KCs
in a course is denoted as list(KC) = {KC1,KC2, . . . ,KCn}, where n is the total number
of the KCs of the course. For example in Fig. 1, the possible learning sequences are
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{{KC1 → KC4 → KC2} , {KC2 → KC1 → KC4} , {KC3 → KC4 → KC2} ,
{KC2 → KC3 → KC4}}. The contextual multi-armed bandit algorithm is an extension
of the classical multi-armed bandit algorithm [14] that considers the context in which the
decisions are made. In the CMAB problem, besides the observed rewards, the agent also
considers the additional information received about the context to make the decision.
The context can be thought of as a set of features that describe the state of the system,
and the objective is to learn a policy that maps the context to the best action to take.

5 The Proposed Algorithms

We propose a contextual multi-armed bandit algorithm for recommending the next KC
for learners to learn based on two types of context information as follows.

• The similar profile, characteristics, and backgrounds of past learners
• The current situation of learners in the course. Current situation of learners can be

seen as the current completion status of the KCs

Let’s denote f kg to be k global features that are included in the first type of context.

f kg ∈ [0, 1]k is a binary feature matrix of fixed dimensionality k.

Let’s denote f la to be l per-arm (per selection) features that are included in the second
type of context. f la ∈ [0, 1]l is a binary feature matrix of fixed dimensionality l, where
l = 2n.

Each KC is presented by two binary features: 1- If KC is taken and 2- If KC is
completed (i.e., passed/failed).

1 ≤ i ≤ n|KCi =
[
f kgi; f lai

]
- KC feature matrix presenting both global features and

per-arm features for each of KC (a horizontal concatenating matrix).
There are a fixed number of arms n in CMAB which are equal to the number of KCs

(each KC presents an arm). At each time stept, there are a number of nt ≤ n possible
arms to select. The nt possible arms are dependent on two factors: 1- the remaining
KCs to complete and 2 – possible KCs from the AND-OR graph to take. If the selected
arm is completed (i.e., the student passes the selected KC), the agent receives a binary
reward of 1; otherwise, 0. Let’s denote rti ∈ {0, 1} as the binary reward at time step t for
selecting arm i. The KC feature matrix is then updated before the next time step.

The framework that we propose consists of offline and online learning, where offline
learning stores the structure of domain model, student database and policy base [2]. On
the other hand, online learning is the agent using CMAB algorithm to select the next KC
for a learner. Every time a learner puts his/her attempt on a recommended KC, either
he/she can complete or cannot complete the KC, the binary reward and the KC features
are recorded into the student database. We use the binary classification algorithm pro-
posed by David Cortes [15] as black-box oracles for finding the best policy on observed
context and rewards. The contextual Multi-Armed Bandit algorithms have the dilemma
of balancing exploration and exploitation. Some methods have been proposed such as
Epsilon-Greedy, UCB, or Thompson Sampling. In this research, we compare threemeth-
ods by simulating CMAB using logistic regression as black-box oracles. However, we
need to establish baselines for each method first.
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Re-planning in the CMAB: Given the systematic capture of the learner’s performance
within the framework of per-arm features, the management of failures assumes signifi-
cance, particularly in the context of re-planning. In scenarios necessitating re-evaluation
and adjustment, the agent’s role extends to the discerning recommendation of the next
Knowledge Component, incorporating a nuanced consideration of the failures attributed
to the previously suggested KC. This approach not only ensures a meticulous handling
of learning dynamics but also underscores the agent’s capacity for informed decision-
making and adaptive planningwithin the broader educational framework. The integration
of failure-aware considerations into the re-planning process emerges as a pivotal aspect,
contributing to the resilience and effectiveness of the learning algorithm.

6 Experiments and Simulations

In our research, we plan to conduct the incorporation of experiments and simulations.
in assessing the efficacy and performance of the proposed Contextual Multi-Armed
Bandit approach. The experimental design encompasses the deployment of the CMAB
algorithm in diverse educational contexts, involving real-time interactions with learners.
Both experiments and simulations are carried out in the environment context of course
COMP 272 (Data Structures and Algorithms) fromAthabasca University. We especially
chose Unit 7 (sorting algorithm) of the course to model the KC spaces.

Fig. 2. KC graph of sorting algorithm Unit.

Figure 2 shows the KC graph of 11 sorting algorithms in the unit of the course.
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In the experiment, participants will engage with a learning system designed to rec-
ommend a KC for their learning at each step, based on their individual background and
performance, and the system will adapt to their progress. On the other hand, the simula-
tion will produce student data and emulate their learning progression within the learning
system. Our primary objective is to assess and compare the performance of the adap-
tive learning system across various learning curves using four foundational algorithms:
Bootstrapped UCB, Epsilon-Greedy, Bootstrapped TS, and Random Action Selection.

7 Conclusion

In conclusion, this research highlights the potential of personalized learning paths as
a promising instructional strategy in the realm of online learning. By catering to the
unique needs and preferences of individual learners, personalized learning paths have
the potential to enhance the learning experience and outcomes. However, the complexity
of creating effective personalized learning paths arises from the significant variability
in learners’ characteristics, behaviors, and learning context. As is known, existing rec-
ommendation methods have limitations in dealing with the dynamic nature of learning
environments, leading to suboptimal recommendations. To address this gap, our study
proposes a novel approach: a personalized learning path recommendation system based
on a contextual multi-armed bandit framework. This approach aims to overcome the
challenges posed by dynamic learning contexts and adaptively offer students optimal
learning sequences. By utilizing the contextual multi-armed bandit approach, the system
can dynamically adjust learning paths based on real-time feedback, ensuring that stu-
dents receive the most relevant and suitable content as they progress. This adaptability
allows the system to respond to changes in learners’ preferences and needs, providing
them with a modified sequence when re-planning is required. Through this research,
we hope to contribute to the advancement of personalized learning in online education
and provide educators and learners with a more effective, and responsive learning path
recommendation system. The findings and insights from this study have the potential to
inform the design of future personalized learning platforms, enhancing the overall learn-
ing experience and promoting better learning outcomes for diverse learners in various
educational settings.
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Abstract. Generative Artificial Intelligence empowered conversational agents
(chatbots) seem to be increasingly used in various settings including education.
While student teachers are key stakeholders in supporting and improving educa-
tion, not many studies exist in student teachers’ views on the educational use of
chatbots. The current study performs a usability evaluation and explores student
teachers’ views on the academic use of the VIP-Bot, an advanced academic Dis-
cord chatbot, which leverages the OpenAI’s gpt-3.5-turbo-instruct model. Student
teachers, within the context of the formative task of writing a literature review,
interacted with the chatbot and self-reported their experiences through an online
survey. The usability evaluation returned a relatively high SUS score (76.36) for
the chatbot. Moreover, student teachers’ view on the chatbot acceptance, effec-
tiveness and motivation were positive. The chatbot can be helpful in developing
ideas and initiating further engagement with the literature. Academic misconduct
concerns have been expressed if the chatbot is not used properly. The study, as
a usability evaluation, is an essential step in further chatbot development and, as
an investigation of student teachers’ views, it is an essential step on the chatbot
employment in teaching and learning.

Keywords: chatbot · Discord bot · Generative Pre-trained Transformer (GPT) ·
gpt-3.5-turbo-instruct · system usability · acceptance · effectiveness · motivation

1 Introduction

Chatbots, also known as Conversational User Interfaces (CUI), are software applications
with the capacity to conduct online conversations with users via text or speech, acting as
virtual assistants [1]. Conversational user interfaces can be based on various underlying
technologies such as rule-based systems, Natural Language Processing (NLP), Machine
Learning models include Generative Pre-trained Transformer (GPTs) in Generative AI.

Generative AI is a type of artificial intelligence that trains models with large amount
of data in order to generate new digital content (text, images, video, or audio clips) [2].
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One example of Generative AI is the GPT (Generative Pre-trained Transformer) models
and the first GPT was introduced by OpenAI [3]. GPT models are based on Large
Language Models (LLMs) that autonomously learn from text data and can generate
human-like text responding to a human-providedprompt. Thesemodels canbe embedded
in a variety of applications. In particular, they can offer dynamic and accessible forms
of online interactions with chatbots providing human-like conversational experiences to
users [4].

Generative AI empowered conversational agents seem to be increasingly used in
various settings including education [5, 6]. However, related research is still at an early
stage [2]. Moreover, with few exceptions (e.g., [7]) not many empirical studies exam-
ining the use of chatbots in student teachers’ education exist [8]. Student teachers can
be the ambassadors of any educational change such as the use of Generative AI in the
educational context, transferring their skills and knowledge into their teaching. To the
best of our knowledge, not many studies have explored the use of Generative AI empow-
ered chatbots to assist student teachers in their formative essay-type assessments. The
current study performs a usability evaluation and explores student teachers’ views on the
academic use of the VIP-Bot, an advanced academic Discord chatbot, which leverages
the OpenAI’s gpt-3.5-turbo-instruct model. The current study is aiming to answer the
following research questions:

1) What is the perceived System Usability toward the Discord academic chatbot, VIP-
Bot?

2) What is student teachers’ experiencewith using theVIP-Bot in termsof its acceptance,
perceived effectiveness, and motivation?

2 VIP-Bot, Generative AI Empowered Discord Chatbot

The VIP-Bot is an advanced academic chatbot on Discord, which leverages the OpenAI
API to access gpt-3.5-turbo-instruct model (See Fig. 1) to provide assistances ranging
from general conversational advice. It makes use of /chat command and public thread
to achieve this, giving its users control over their conversation and focus on the chatbot
interactions and given responses.

Fig. 1. Flowchart showing the system Workflow of the /chat command.
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The /chat command creates a public thread, where each message is used as a prompt
to get a response from the OpenAI gpt-3.5-turbo-instruct model, utilizing the message
history to create context for the model. Along with the message and context, personality
and behaviour instructions are also passed into the model, which are completely cus-
tomizable using a separate config file. The default personality is set to imitate a typical
discord user, complete with regular slang and internet shorthand usage.

The GPT model’s response is returned through the API, and captured by the bot,
which is then written out directly in the created thread. When the context limit or the
maximum message count for the model is reached, VIP-Bot automatically closes the
thread. Additionally, Since /chat communicates directly with OpenAI’s model, each
message is first moderated using the OpenAI Moderation API to assess the content
of each message. If a message triggers any moderation flags, then it is either directly
blocked or flagged, and not passed onto the OpenAI API.

When a user initiates interactions with the bot via the primary command: /chat (See
Fig. 2), VIP-Bot sees the command, it creates a new public thread to allow the user and
itself to have a conversation without interfering with the original channel’s activity. It
also allows multiple users to have simultaneous conversations with the bot and allows
the bot to differentiate between each conversation. During the initial thread creation
process the user also passes in a ‘message’ argument which serves as the initiating text
with the chatbot.

Fig. 2. Screenshot showing an example use case of the /chat command. The chatbot can hold a
conversation with the user even when prompted with questions not related to coursework.
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3 Methodology

3.1 Participants and Procedures

Data collected based on a convenience sampling. The participants were 10 student teach-
ers, 4males (40%) and 6 females (60%), enrolled in a post-graduate course inTechnology
Enhanced learning at the Department of Education of a UK University. Student teachers
were five primary school teachers, four secondary school teachers and one higher edu-
cation lecturer. Participants had not had any previous experience in using chatbots for
learning. The study has been granted Ethics approval by the Ethics Committee of the
University and has been conducted during the fall semester 2023.

Student teachers have been asked to write a brief literature review type essay on the
challenges and benefits of using a specific educational technology of their choice in their
own educational context. In alignment with one of the course learning objectives, e.g.,
students to explore new technologies and adapt as necessary, all students had access to the
VIP-Bot on Discord. Therefore, student teachers have been encouraged to interact with
the VIP-Bot to help them to prepare for and complete their formative type of assignment.

It has been also communicated to student teachers that, while this could be seen
as an opportunity to re-think assessment in ways that could be transformative, under
no circumstances the use of AI-generated content be permitted verbatim without clear
indication and acknowledgement. Indicatively, among other topics, students have chosen
to write about augmented, virtual reality, learning analytics, etc. After engaging with
the VIP-Bot, student teachers were asked to complete an online survey with closed and
open-ended questions self-reporting their experience in using the VIP-Bot.

3.2 Instruments

The survey consisted of two parts. The first part intended to evaluate the system usabil-
ity and the second part to explore student teachers’ acceptance levels, perceived effec-
tiveness, motivation, and concerns. Usability is a pragmatic attribute that refers to the
fulfilment of users’ functional goals and therefore it is important to be measured [9].
Usability, as defined in ISO 9241–11:2018 (Sect. 3.1.1) [10] as ‘the extent to which a
system, product or service can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use.’

For the system usability of the VIP-Bot we have used the System Usability Scale
(SUS) [11] because of its validity and reliability [12] and its wide acceptance and easy
administration. The questionnaire consists of 10 items that are answered using a 5-point
Likert scale ranging from “strongly disagree” to “strongly agree”, resulting in a single
score between 0 and 100 (in 2.5 points increments) where higher scores indicate better
usability.

To explore chatbot’s acceptance, effectiveness, and student teachers’ motivation we
have used a 10-item questionnaire. For the acceptance we adopted 3 items from [13], for
perceived effectiveness we used a 4-items self-developed scale and for motivation we
adopted 3 items from the intrinsicmotivation inventory [14]. Sample items for acceptance
are “I indent to use the Discord chatbot in the future” and “I find the Discord bot chatbot
easy to use”, for perceived effectiveness “The Discord bot chatbot provides me with
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helpful responses relevant to my queries”, “The Discord bot chatbot engaged me in
meaningful conversations” or “The Discord bot chatbot can have an impact on student
learning outcomes and educational practices” and for motivation “I enjoy using the
Discord bot chatbot” and “I would describe interacting with Discord bot chatbot as very
interesting”.

Cronbach’s alpha tests were applied to examine the reliability of the instrument with
the results to showacceptable (>0.70) levels of internal consistency.Cronbach’s value for
acceptancewas 0.95, for perceived effectivenesswas 0.77 and formotivation 0.81. For an
external validation of the scale properties, we compared the findings with measurements
from similar studies [15, 16]. To further capture student teachers’ experience, we have
used open-ended questions focusing on the acceptance and the effectiveness of the VIP-
Bot and participants’ motivation. Moreover, student teachers’ concerns on the use of the
chatbot have been explored.

4 Data Analysis and Results

4.1 System Usability

To answer the first research question regarding system’s usability, we have used the
overall System Usability Score (SUS) questionnaire. A total of ten responses were col-
lected. The number of participants is within the usability study’s general rule 10± 2 for
optimal sample size [25]. The overall SUS of the VIP-Bot, representing the composite
measure of the overall usability of the system [11], was found 76.36. Based on [17, 18]
the result found is above average and it is considered as Good. This indicates that the
VIP-Bot and its functionality is good for using it. SUS is a unidimensional instrument
with its questionnaire items better not considered individually [11], however we report
in Table 1 the responses on the individual questionnaire items along with the median,
the mean and standard deviation to highlight each one questionnaire item.

4.2 Student Teachers’ Experience

To answer the second research question regarding student teachers’ experience in using
theVIP-Bot, we have used an online surveywith a) quantitative data collected from a sur-
vey on chatbot’s acceptance, effectiveness and participants’ motivation and b) qualitative
data from open-ended questions on the above constructs.

For the quantitative data, participants responded online to Likert-type questions
related to their acceptance level toward the chatbot, perceived effectiveness and their
motivation. Table 2 presents the descriptive statistics for student teachers’ experience
in terms of their acceptance and their perceived effectiveness of the chatbot and their
motivation in using it. Students self-reported a high-level of acceptance for the VIP-Bot
(3.81, SD = 1.16) in the 5-point Likert scale. Student teachers also reported that they
perceived the effectiveness of the chatbot as high (3.19, SD = 0.81). Moreover, student
teachers self-reported their level of motivation while interacting with the chatbot as high
(3.85, SD = 0.97).

A visual representation of the above sub-scales is depicted in the following Fig. 3
with box plots with the overall patterns of student teachers’ responses. Acceptance and
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Table 1. SUS questionnaire and statistics for each item.

Strongly Disagree Strongly Agree Median Mean SD

1 2 3 4 5

1. I think that I
would like to
use this system
frequently

0 0 3 6 2 4 3.91 0.67

2. I found the
system
unnecessarily
complex

1 10 0 0 0 2 1.91 0.29

3. I thought the
system was easy
to use

0 0 1 7 3 4 4.18 0.57

4. I think that I
would need the
support of a
technical person
to be able to use
this system

0 6 5 0 0 2 2.45 0.49

5. I found the
various
functions in this
system were
well integrated

0 0 5 6 0 4 3.55 0.49

6. I thought there
was too much
inconsistency in
this system

7 4 0 0 0 1 1.36 0.48

7. I would imagine
that most people
would learn to
use this system
very quickly

0 0 2 8 1 4 3.91 0.51

8. I found the
system very
cumbersome to
use

4 6 1 0 0 2 1.73 0.61

(continued)
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Table 1. (continued)

Strongly Disagree Strongly Agree Median Mean SD

1 2 3 4 5

9. I felt very
confident using
the system

0 0 2 6 3 4 4.09 0.66

10. I needed to
learn a lot of
things before I
could get
going with this
system

4 7 0 0 0 2 1.64 0.48

Table 2. Student teachers’ acceptance, perceived effectiveness, & motivation toward VIP-Bot.

N Minimum Maximum Mean Std. Deviation

Acceptance 10 1.33 5.00 3.81 1.16

Effectiveness 10 2.00 4.25 3.19 0.81

Motivation 10 1.67 5.00 3.85 0.97

motivation have high medians (around 4) while the median for the perceive effectiveness
of the chat is lower (approximately 3). Comparing the interquartile ranges, we identified
a rather similar dispersion.

For the qualitative data, participants responded online to open-ended questions pro-
viding a few interesting insights. Qualitative data were analysed using thematic analysis
[19] following a deductive approach using a pre-determined coding scheme based on
the constructs of acceptance, effectiveness, and motivation, rather allowing the themes
to be determined by the data [20].

In terms of the chatbot acceptance, student teachers found the chatbot to be useful
and easy to use and they “would like to use it in the future”. Participants expressed their
willingness to embrace and integrate the chatbot as a valuable resource for learning and
skill development, e.g., “I will use it to clarify terms and concepts as I am engaging with
the literature” and “I would encourage my students to use it during their preparation
of class” or “to improve their writing skills” since it “can provide useful language
structures”. Moreover, “it is good tool for reflecting critically on its output.” The above
statements imply student teachers’ acceptance of the VIP-Bot and their willingness to
incorporate it into the educational process.

In terms of the chatbot’s effectiveness, it is prominent in terms of the evaluation
of response quality, consideration of prompting techniques, and emphasis on clarity in
questioning to achieve optimal outcomes. A participants mentioned “I received clear and
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Fig. 3. Visual box-plot representation of the descriptive findings.

conscience answers” however, another said, “some of the responses were not compre-
hensive”, while most participants reported that “clear and specific prompting obviously
results in better results”. The influence of clear and specific prompting on the quality of
responses has been acknowledged as “using straightforward words such as (simplify) to
indicate the purpose of the prompt can have better results to my questions” and “follow-
ing up questions to clarify and breaking down questions into smaller sub questions” is
important.

In terms of motivation, student teachers enjoyed the interaction with the VIP-Bot
(e.g., “I enjoyed using the chatbot a lot”), and they would like to use it because it can
be helpful in supporting them in their study. A participant said that the VIP-Bot can
help to “discover the key thinkers/writers and their works in relation to a field of study”
implying a motivation to deepen one’s understanding and knowledge base. Additionally,
participants mentioned that the VIP-Bot “is good additional for initial research, ideas,
or guidance”, by providing “initial explanations of concepts, before exploring these in
greater depth in the literature” and “it is good additional for initial research, ideas, or
guidance.” The above statements imply an underlying motivation to further explore and
engage with scholarly literature to inform and enhance one’s own work.

However, student teachers reported a few concerns on the use of the VIP-Bot. Con-
cerns have been expressed about students simply copying the answers without verifying
their accuracy or engaging in critical thinking, e.g., “taking the answers as ‘fact’ and
using these as the basis for assignments, which could be limiting and sometimes incor-
rect.” Also, few concerns that students might view the VIP-Bot as a complete alternative
to doing their own work, potentially undermining academic integrity, e.g., “my only
concern would be that students use it as a complete alternative to do all the work for
them.”
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5 Discussion and Conclusion

Interest in Generative AI empowered chatbots development is growing. Moreover, its
employment in education is promising [2, 21]. The current study is a usability evaluation
and an investigation of student teachers’ views on the academic use of the VIP-Bot,
an advanced academic Discord chatbot, which leverages the OpenAI’s gpt-3.5-turbo-
instruct model. The study examines usability, acceptance, effectiveness, and motivation
as main indicators of how well users can learn and use chatbots and how satisfied and
motivatedusers are during the interaction. Similarmetrics havebeen identifiedbya recent
systematic overview of various chatbots usability studies [15]. Student teachers used the
VIP-Bot to assist them in completing their formative assessment and self-reported their
views on the potential use of the VIP-Bot in education for similar purposes.

Study findings found for the SUS of the VIP-Bot to be 76.36 which is considered as
Good (B+) based on [11]. Considering the structure of the SUS questionnaire of having
two factors i.e., usability (items #1, #2, #3, #5, #6, #7, #8 and #9) and learnability (items
#4 and #10) [22], student teachers’ responses indicated that the system was easy to learn
(the median values for items 4 and 10 were quite low) and highly usable.

Since student teachers found the chatbot useful and easy to use they indent to use it
in the future. The effectiveness of the chatbot attributed mainly to its ability to provide
responses relevant to user queries offering opportunities for meaningful conversations.
Students self-reported also that they enjoyed using the chatbotwhich is in agreementwith
similar studies exploring students’ intrinsic motivation while interacting with chatbots
[21, 23]. Student teachers also acknowledged the educational value of theVIP-Bot if used
appropriately. They agreed that generativeAI supported chatbots pose both opportunities
and challenges to education.

While they can be helpful in supporting essay writing and assignments completions,
several challenges have been identified as well. “Students use it as a complete alternative
to do all the work for them” has been identified as the main concern of the participants.
However, student teachers agreed that if “a discussion would have taken place either
prior to use, or after use to reflect/discuss critically on the use of VIP-Bot, how it
works, what it can do, it’s limitations” would be useful. Participants seem to agree that
it is not always the case that using Generative AI in educational settings is considered
academic misconduct if this resource is used critically. The chatbot can be a “positive
tool to generate and develop ideas and for developing critical thinking” as long as “both
students and teachers depend in original sources”.

Research provides evidence that Generative AI empowered chatbots can introduce
new ways of teaching and learning transforming such education [2, 24]. Our study is
significant because it provides an evaluation of a generative AI empowered chatbot with
potential in education and in particular to assist studentswith their formative assessments.
As a usability evaluation, the study is an essential step in further chatbot development. As
an investigation of student teachers’ views, the study is an essential step on the chatbot
employment in teaching and learning. Our study has limitations. One limitation is the
small sample size and especially for eliciting quantitative data. Future research will use
larger cohorts and moreover it will develop a more structured instructional design based
on the use of the VIP-bot, the Generative AI empowered Discord chatbot.
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Abstract. Novice programmers face various errors during the learning of a pro-
gramming language. Most of them need help from instructors since they lack
error resolution skills. On the other side, instructors spend a lot of time figuring
out students’ error causes. Long error detection times result in delayed and failed
feedback, leading to a loss of student motivation. To support instructor’s fast feed-
back, a detection method of error cause is needed. Existing detection methods,
which are code-based, detect common and specific errors that can be identified by
analyzing source code. These methods do not cover the diverse error patterns of
novice programmers sufficiently, such as logical defects. To resolve this issue, it
may be beneficial to detect rough and correct error causes of diverse error patterns.
In this paper, a prediction method of rough error cause is proposed by considering
not only source code, but also problem information, execution results, and the
cognitive level indicating programming skills. We assume that different program-
ming skills lead to different error patterns, which can help roughly but precisely
predict error causes of runtime and logic errors in novice programmers. For per-
formance evaluation, data from two introductory programming courses are used
to validate the effectiveness of the cognitive level. Additionally, the usability for
fast feedback is validated by comparing the error causes detection times of the
instructors in each case.

Keywords: Error Detection · Cognitive Level · Programming Error ·
Introductory Programming Course · Learning Taxonomy

1 Introduction

An introductory programming course (IPC) involves not only learning coding concepts
but also programming exercises. Novice programmers are challenged by various pro-
gramming errors [1]. They need help from the instructor because they lack the ability
not only to correct errors but also to identify their causes [2]. To provide feedback to the
student, the instructor looks at the source code, execution result, and problem informa-
tion to detect the error cause. Since it takes a lot of time to detect the error cause, the
more students there are, the more delays and failures in instructor’s feedback [3]. This
late feedback demotivates students, making it difficult for them to achieve their learning
goals [4]. Fast feedback requires instructors to quickly identify the error cause.
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Recently, various methods have been proposed to detect errors through source code
analysis. Programming error types are categorized into compilation error, runtime error
and logic error. Compilation errors are caused by incorrect syntax usage, which are
perfectly detectable because the error message and location are precise [5]. Runtime
errors occur during code execution due to poor software design or mechanical defects.
They can be detected by debugging since it is possible to knowwhere the error occurred.
However, this method is applicable only to memory-related errors detectable through
source code analysis [6]. In the case of a logic error, since the program does not produce
the expected results without any information, logic errors are hard to detect by analyzing
the source code [7]. Since existing methods focus on common and specific error causes
through source code analysis, they do not sufficiently cover the diverse error patterns of
novice programmers. For instructorswhowant to provide fast feedback, correct detection
of rough error causes may be more beneficial than incorrect detection of specific error
causes. To correctly detect the rough causes of novice programmers’ diverse errors, it is
necessary to use additional data beyond the source code.

In this paper, a method is proposed to predict the rough causes of runtime and
logic errors by considering the programming skills of novice programmers. The pro-
posed method is based on the research question that different programming skills lead
to different error patterns and that programming skill data may be helpful in predicting
error causes. To support fast instructor feedback, amachine learning classificationmodel
classifies data such as source code, problem information, execution results, and program-
ming skills into rough error causes. For data collection, errors from the programming
exercises of the introductory programming courses are analyzed. Programming skill
data are obtained through cognitive level assessments. Cognitive level refers to student’s
programming skills as measured by learning results. The cognitive level is assessed by
learning topic using the learning taxonomy as a framework. To evaluate the prediction
performance of rough error causes, classification models are compared on two introduc-
tory programming courses data. The effectiveness of the cognitive level is validated by
comparing the prediction performance with and without cognitive level. Additionally,
instructors’ error cause detection times are compared to validate whether the proposed
method helps instructors to provide fast feedback.

2 Related Work

2.1 Programming Error Detection

Compilation errors are easy to detect because the errormessage at compile time indicates
the error’s location. Li [8] classifies compilation errors based on program tokens, the
smallest unit of a program. He divides 16,926 error codes into 13 category labels and
trains the model. The model shows a high classification accuracy of about 98%. Ahmed
[5] uses the classification model trained on over 15,000 error repair codes to provide
alternative feedback on errors. The model finds existing code that matches compilation
errors in new code and provides feedback on corrections made by other students. The
model demonstrates 97.7% classification accuracy for 212 error category labels. The
results show that compilation errors can be perfectly classified and detected.
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Runtime errors can be detected by debugging with a debugger. However, novice
programmers are not familiar with debuggers, so debugging is often not done well. For
this reason, Egan [6] built a debugging tool that enables runtime error detection for
novice programmers. The study targets runtime errors that are memory-related, such as
invalid memory accesses, uninitialized memory reads, and overflows. Delev [9] reports
the results of static analysis of solutions submitted by students in an exam at IPC. The
study detects and analyzes runtime errors. However, the errors that can be detected
are limited since they are only detected by analyzing the code without executing it.
For example, it only detects errors that can be detected by code alone, such as unused
variables, unexecuted code, variable initialization, and out-of-bound access.

Logic errors are difficult to detect because there is no information available to specify
the error cause. Nakayama [3] estimates logic error causes based on pattern matching
analysis between strings.However, only a few logic errors are applicable to this approach,
specifically those focusing on source code statements. In addition, for estimation, an
existing case base of identical error causes must exist. Yoshizawa [7] proposes a logic
error detection algorithm based on structural pattern and error degree. The proposed
method detects logic errors by comparing the source code containing the error with the
correct source code. Therefore, it is applicable only to some problems where students’
solutions may be similar. In other study [10], the detection is done through comparison
with the correct source code. Therefore, this approach has limitations, as it requires
extensive source code or is applicable only to some common errors.

2.2 Cognitive Level Assessment Based on Learning Taxonomy

A learning taxonomy describes and categorizes the cognitive levels that a student may
experience in the learning process. The most representative is the revised Bloom’s Tax-
onomy [11], which is based on Bloom’s taxonomy [12]. It has a hierarchy of six cog-
nitive levels that build on each other. In programming education, learning taxonomy
is a framework for assessing student learning results by classifying them into cogni-
tive levels. Therefore, learning data such as problems or learning outcomes must first
be classified into cognitive levels. Students are mapped to the corresponding cognitive
level based on the learning data collected at the end of learning.

Fuller [13] modified the Revised Bloom’s Taxonomy to reflect the various learning
paths and the semi-independence of program understanding skills and creation skills.
Fuller’sTaxonomyprovides amore practical framework for assessing students bydesign-
ing a two-dimensional assessment grid that separates two skills. Also, the programming
activitiesmapped to cells in the grid strengthen the discriminatory power,making it easier
to assess a student’s skills. Separating program understanding skills and creation skills
can help classify error causes according to students’ programming skills. Therefore, in
this study, Fuller’s taxonomy is used as a cognitive level assessment.

3 Analysis of Programming Errors by Novice Programmers

The target IPC was a compulsory course in the first semester of the bachelor’s degree
curriculum determined by the Computer Science faculty at the School of Computer
Science and Engineering. Table 1 details the programming language and curriculum.
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Theoretical tests and programming exercises must be completed within a time limit
and are graded using an intelligent tutoring system (ITS). Theoretical tests are graded
by comparing answers to problems such as short-answer. Programming exercises are
graded on student-submitted code against test cases prepared by the instructor.

Table 1. Introductory Programming Course Details.

Type Description

Programming Language C

Learning Topics 1. Variable, Conditional 2. Loop

3. Array, String 4. Function

5. Variable scope 6. Recursive function

7. Pointer 8. Structure

Course Structure (each topic) Learning, Theoretical test, Programming exercise

The analysis of students’ error data are performed on two IPCs in 2021: 1,841
errors from 37 students in IPC-A and 2,098 errors from 34 students in IPC-B. Data are
analyzed in the following format: student, learning topic, problemnumber, code features,
execution result, exit value, and error causes. For error causes classification, the IEEE
Software Anomalies Standard’s Type criteria were referenced [14]. Among the types,
Data, Interface, Logic, and Syntax were used to classify the error causes, and 10 rough
error causes were defined for these types, except for Syntax. Table 2 displays the error
types and rough error causes, and Table 3 displays the classification results.

Table 2. Error types and rough error causes.

Type Definition Rough error causes

Data Defect in data definition, initialization,
mapping, access, or use, as found in a
model, specification, or implementation

1. Wrong memory access

2. Wrong parameter

3. Overflow

4. Floating point error

Interface Defect in specification or implementation of
an interface

5. Wrong input interface

6. Wrong output interface

Logic Defect in decision logic, branching,
sequencing, or computational algorithm, as
found in natural language specifications or
in implementation language

7. Wrong solution

8. Wrong expression-statements

9. Wrong loop condition

10. Wrong loop termination control

Syntax Nonconformity with the defined rules of a
language

(Exclude from error prediction)
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Table 3. Result of the classification of the analyzed error causes.

Type Data Interface Logic Syntax

1 2 3 4 5 6 7 8 9 10

IPC-A
(1,841)

39 72 11 6 13 194 878 186 97 57 288

2% 4% 1% 0.3% 1% 10% 48% 10% 5% 3% 16%

IPC-B
(2,098)

75 30 14 7 52 337 974 119 125 66 299

4% 1% 1% 0.3% 3% 16% 46% 6% 6% 3% 14%

4 Cognitive Level Assessment

4.1 Classification of Learning Data by Cognitive Level

To assess cognitive level, theoretical test problems and programming exercise problems
are classified into appropriate cognitive levels. Problems are classified using the Fuller’s
Taxonomy and criteria defined in [15]. Among the cognitive levels, the Evaluate level
requires programming activities such as peer review and refactoring for assessment.
These activities are not usually part of the IPC curriculum, so the Evaluate level is
excluded from this study.

The theoretical tests consisted of five problems, eachwith one ormore sub-questions.
The programming exercises consisted of five problems that required students to write
complete program code. Simple problems provided solutions or conditions towrite code,
whereas Advanced problems only provided a program’s requirements. Table 4 displays
the problem classification results for the eight learning topics. Since problems alone
cannot assess all cognitive levels, learning outcomes are used for assessment. Table 5
details the learning outcomes used for assessment.

Table 4. Cognitive level classification results of the problems.

Category Problem type Level Classification result

Theoretical 

test

Fill-in-the-blank Rem. T1 T2 T3 T4 T5 T6 T7 T8

Short-answer Rem. Rem. 1 2 1 2 2 2 2 2

True/False Rem. Und. 3 2 2 0 2 0 1 1

Write output value Und. Ana. 0 0 1 1 1 1 1 1

Write code Apply None 0 0 0 0 0 0 0 0

Correct code error Ana. Apply 3 3 4 5 3 5 4 3

Programming 

exercise

Simple Apply Create 3 3 2 2 2 2 2 3

Advanced Create Total 10 10 10 10 10 10 10 10

Rem.: Remember; Und.: Understand; Ana.: Analyze; T: Topic 
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Table 5. Learning outcomes to cognitive level assessment.

Learning outcome Description Level

Executable code submission Student’s minimal program creation skills None

Number of solved problems Solution creation skills and testing skills Understand,
Analyze

Number of occurred error types Incomplete understanding of syntax and
semantic rules, problem comprehension,
solution structure, and testing

Analyze

Number of occurred errors Lack of awareness of program errors or
solution flaws

Analyze

Consecutive errors of same type Lack of error correction skills Analyze

4.2 Cognitive Level Assessment Process

The cognitive level is quantified into program understanding skills and creation skills.
Program understanding skills are assessed through the levels Remember, Understand,
Analyze, and program creation skills are assessed through the levels None, Apply, and
Create. Assessment process required five steps.

First, categorical data are preprocessed to be closer to 1 if it reflects a cognitive
level and closer to 0 otherwise. Second, the data are scaled to have a minimum value
of 0 and a maximum value of 1. However, the scaling result of error data in learning
outcomes is closer to 1 the more errors there are, so 1 minus the scaling value is used.
Third, sum the scaled data by cognitive level. Fourth, the summed data are scaled once
again. Fifth, apply different weights to the data for each cognitive level. The weighting
was 1x for Remember and None, 2x for Understand and Apply, and 3x for Analyze and
Create. Since cognitive levels are a strict hierarchy, the better the metrics associated with
the higher levels, the better the assessment should be. Table 6 presents an assessment
example of a student in learning topic 4.

Table 6. Example of assessing a student’s cognitive level.

Step Theoretical test Programming exercise Learning outcomes

1 5 2 1 2 1 1 0 1 1 0 1 3 2 5 1

2 1 1 0.5 1 0.5 1 0 1 1 0 1 0.6 0.5 0.7 0.9

Step Remember Understand Analyze None Apply Create

3 2 0.6 3.2 1 3.5 1

4 1 0.6 0.6 1 0.7 0.5

5 1 1.2 1.8 1 1.4 1.5

Understanding skills 4 Creation skills 3.9
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5 Prediction of Rough Error Causes

5.1 Model Training

The training dataset for the prediction model includes data on cognitive levels, topic
numbers, exercise problem numbers, execution results, program exit values, and counts
of code features such as identifiers, keywords, andoperators.Cognitive level data are used
in the form of the understanding skills and creation skills of the previous learning topic
and the average of the accumulated understanding skills and creation skills. Students
solve problems based on their accumulated knowledge and newly learned knowledge.
Therefore, the cognitive level of the previous study topic is closest to the cognitive level
of the current. Also, the average of the cognitive level is used as the generalized cognitive
level of the student accumulated from past learning topics.

Since the error causes have different ratios, the data for training and validation are
sampled using a stratified method to maintain these ratios. Table 7 displays the training
information for the models and the performance comparison according to the cognitive
level data. Without cognitive level data, the Extreme Gradient Boosting model achieves
the best performance, with 66% accuracy. With cognitive level data, the Light Gradient
Boosting Machine model outperforms others, reaching 85% accuracy.

Table 7. Model training and validation information and performance comparison results.

Model training dataset IPC-A dataset IPC-B dataset Total dataset

1,553 set 1,799 set 3,352 set

Model performance
(without cognitive level data)

Model Accuracy Precision F1 score

Xgboost 0.662 0.615 0.618

Gradient boosting 0.636 0.608 0.610

Model performance
(with cognitive level data)

Model Accuracy Precision F1 score

Lightgbm 0.851 0.844 0.843

Xgboost 0.847 0.840 0.839

Xgboost: Extreme gradient boosting; Lightgbm: Light gradient boosting machine.

5.2 Cognitive Level Effectiveness Testing and Validation

For cognitive level effectiveness validation, Split the data from the IPC-B by student to
test per student. Use the students’ data except the test student data and the IPC-A data
for training. Repeat this for all IPC-B students data. Table 8 displays the test results of
rough error causes for validation of cognitive level effectiveness.
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Table 8. Test results of rough error causes for validation of cognitive level effectiveness.

Type Without cognitive level data With cognitive level data

Test
Performance

Accuracy Precision F1 score Accuracy Precision F1
score

0.629 0.636 0.623 0.852 0.845 0.845

Details True Ratio False Ratio True Ratio False Ratio

Data 1 46 61% 29 39% 74 99% 1 1%

2 14 47% 16 53% 29 97% 1 3%

3 9 64% 5 36% 12 86% 2 14%

4 7 100% 0 0% 7 100% 0 0%

Total&Average 76 60% 50 40% 122 97% 4 3%

Interface 5 10 19% 42 81% 31 60% 21 40%

6 128 38% 209 62% 249 74% 88 26%

Total&Average 138 35% 251 65% 280 72% 109 28%

Logic 7 777 80% 197 20% 901 93% 73 7%

8 20 17% 99 83% 63 53% 56 47%

9 79 63% 46 37% 119 95% 6 5%

10 42 64% 24 36% 47 71% 19 29%

Total&Average 918 71% 366 29% 1,130 88% 154 12%

Without the cognitive level, the accuracy is 63%. The accuracy is 60% for data, 35%
for interface, and 71% for logic. In the case of logic, considering the performance of
predicting wrong solution causes, error causes are not predicted well. On the other side,
the accuracy is 85% when cognitive levels are included. Prediction performance is 97%
for data, 72% for interface, and 88% for logic. The test results show that the cognitive
level is effective at predicting roughly but precisely the error causes.

To validate the usability for fast feedback by instructors, compare the time spent
detecting and providing feedback on detailed error causes for each case. The experiment
uses one error data per error cause. Instructors are given common problem information,
test case, execution result, and source code. The experiment was conducted using tutors
from IPCs to minimize differences in instructors’ abilities. Table 9 displays the time
spent by instructors to provide feedback. Compared to the manual case, the average
feedback time is 23% faster without cognitive level and 34% faster with cognitive level.
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Table 9. Comparison of time to feedback from instructors by case.

Type Instructor 1
(manually)

Instructor 2
(without cognitive
level)

Instructor 3
(with cognitive
level)

Information Seconds Seconds (Prediction) Seconds (Prediction)

Data 1 2 487 511 448
(False)

577
(False)

192 191

3 4 365 163 285 76 310 125

Interface 5 6 190 288 210
(False)

92 358
(False)

98

Logic 7 8 320 417 128 510
(False)

160 550
(False)

9 10 320 354 191 104 188 79

Average 342 262 225

6 Conclusion

The proposed method to support fast feedback from instructors predict the rough but
precise causes of runtime and logic errors of novice programmers in an introductory
programming course. This method covers diverse error causes such as logical defects,
unlike existing approaches that focus on common and specific error causes. Existing
error detection methods are source code-based and do not use students’ programming
skills, such as cognitive level. Our approach uses not only source code, but also problem
information, execution results, and cognitive level.

The effectiveness of cognitive level in error cause prediction was validated for stu-
dents in two introductory programming courses. The prediction accuracy was 63%with-
out cognitive level and 85% with cognitive level, and cognitive level enhanced the pre-
diction of most error causes. This indicates that different programming skills of students
lead to different error causes, and thus cognitive level may be useful in the program-
ming error causes detection. Additionally, the proposedmethod helped instructors detect
error causes and compared to manual, the instructor’s feedback was 23% faster without
cognitive level and 34% faster with cognitive level.

Acknowledgments. This study was supported by the BK21 FOUR project (AI driven Conver-
gence Software Education Research Program) funded by the Ministry of Education, School of
Computer Science and Engineering, Kyungpook National University, Korea (4199990214394)
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Abstract. Social AI agents interact with members of a community,
thereby changing the behavior of the community. For example, in online
learning, an AI social assistant may connect learners and thereby enhance
social interaction. These social AI assistants too need to explain them-
selves in order to enhance transparency and trust with the learners. We
present a method of self-explanation that uses introspection over a self-
model of an AI social assistant. The self-model is captured as a functional
model that specifies how the methods of the agent use knowledge to
achieve its tasks. The process of generating self-explanations uses Chain
of Thought to reflect on the self-model and ChatGPT to provide expla-
nations about its functioning. We evaluate the self-explanation of the AI
social assistant for completeness and correctness.

Keywords: Social AI · XAI · Self-Explanation · Self-Models ·
Generative AI · Combining Knowledge-Based and Generative AI

1 Introduction

Learning at scale, and particularly online learning at scale, offers many well-
established benefits such as geographically distributed and self-paced asyn-
chronous learning that meets the reskilling and upskilling needs of working
learners and learning workers. However, learning at scale, and again particu-
larly online learning at scale, also have several well-known drawbacks such as
lack of social presence, i.e., the ability of learners to establish and maintain a
sense of connectedness both with one another and with the instructor [1].

SAMI (Social Agent Mediated Interaction) is an AI social assistant that helps
students in large online classes form social connections by introducing them to
one another based on shared characteristics and interests [2–4]. This is posited
to increase social presence in an online class environment [3]. However, students
interacting with SAMI often have questions regarding its inner workings [4].
Knowing how SAMI works internally may help students build trust in its recom-
mendations. Thus, the specific research question for us in this paper becomes:
How might an AI social assistant, such as SAMI, provide an explanation of its
inner workings to online students?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 351–360, 2024.
https://doi.org/10.1007/978-3-031-63028-6_29
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We present a computational technique for self-explanation in SAMI. Our self-
explanation technique consists of several parts. First, we view self-explanation
as a process of question answering in which a user provides the AI agent input
in natural language (English), the agent then introspects on its knowledge of
its own reasoning and then produces an answer back to this question also in
natural language (English). Second, this introspection requires the AI agent
to have a self-model of its goals, knowledge, and methods. We use the Task,
Method and Knowledge (TMK) framework [5–7] for representing this self-model.
Third, we replace logical propositions in the traditional TMK models with short
descriptions in English while still retaining their task-method-knowledge decom-
position. Fourth, we conduct a similarity search on the input question and the
English descriptions in TMK model to find the relevant snippets for answering
the question. Fifth, we use Chain of Thought [8] to walk step-by-step over the
TMK model to generate prompts into ChatGPT to produce an answer from the
identified snippets. Thus, the self-explanation technique of SAMI combines the
strengths of generative AI (training over a very large corpus and the ability to
address a large variety of natural language tasks) with that of knowledge-based
AI (knowledge representation and organization at multiple levels of abstraction).

2 Related Work

Self-explanation has re-emerged as an important topic in AI. Muller et al. (2019)
[9] provide a fairly comprehensive and a very useful summary of the history of AI
research on self-explanation. Confalonieri et al. (2021) [10] present another and
more recent take on the history. The need for interpretability of the representa-
tions and processing in modern neural networks is one of the main reasons for
the resurgence of interest in self-explanation in AI agents [11]. Rudin [12] advo-
cates the construction and use only of AI agents capable of self-interpretation
and self-explanation.

It is useful here to distinguish between two kinds of AI assistants: AI assis-
tants that interact with individual humans and AI assistants that enable inter-
action among humans. In the context of AI in learning and teaching, teaching
assistants such as Jill Watson [13,14] that answer a student’s questions are an
example of the former; AI social assistants such as SAMI [2–4] that help foster
interactions among students are an example of the latter. The latter class of
assistants exemplify the paradigm of “computers are social actors” [15]. It is
important to note that self-explanation in social assistants is as important as it
is in personal teaching and learning assistants.

One of the key ideas to emerge out of this early research on explanation
was the importance of explicit representation of knowledge of the design of an
AI assistant [16,17]. An explicit representation of the design knowledge of an
AI assistant enables the generation of explanations of the tasks it accomplishes,
the domain knowledge it uses, as well as the method that use the knowledge
to achieve the tasks. This raised the question of how this design knowledge can
be identified, acquired, represented, stored, accessed, and used for generating
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explanations [7]. One possible answer was to endow the AI agent with meta-
knowledge of its own design [18] and enable the agent to generate explanations
through introspection on its meta-knowledge.

3 Computational Architecture and Process
for Self-explanation

3.1 SAMI, the Social AI Agent

SAMI accesses the self-introduction posts of students in an online discussion
forum and extracts information such as their location, hobbies and academic
interests. Using this, SAMI builds a knowledge graph for each student. It then
uses this knowledge graph to ’match’ students who share one or more similarities.
SAMI communicates its recommendations of matches to the online students who
elect to contact the recommended matches [2–4].

3.2 Semantic Representation of SAMI

From its code base, we manually create a symbolic representation of SAMI in
the Task-Method-Knowledge (TMK) framework [5–7]. Briefly, the TMK model
specifies SAMI’s tasks (or goals), methods (or mechanisms for achieving the
goals) and the domain knowledge of the environment. The TMK is organized
hierarchically. The top-level task specifies SAMI’s method for accomplishing it;
the method specifies the finite state machine for accomplishing the task in terms
of a sequence of information states and state transitions. The state transitions
are annotated by either subtasks or domain knowledge. This decomposition con-
tinues until all leaf nodes in the TMK model are primitive tasks that can be
directly accomplished by the available domain knowledge. Figure 1 illustrates
the hierarchical organization of the TMK model of SAMI. Figure 2 illustrates
the state-transition specification of a method in the TMK model in detail.

Having built the TMK model of SAMI, we manually translate the logical
propositions in the TMK model into brief natural language descriptions to obtain
a semantic representation of SAMI. This semantic representation becomes the
self-model of SAMI that empowers our self-explanation technique.

3.3 Self-explanation Technique

The self-explanation technique utilizes the information from SAMI’s TMK self-
model to provide explanations about its inner workings. As Fig. 3 illustrates,
the technique has three main stages: Classification, Localization and Reasoning.
When a question is asked, the Classifier first analyses the question to deter-
mine which of the pre-defined classes the question belongs to. These classes are
‘mmodel’, ‘kmodel’, ‘multimodel’ (along with ‘can’t answer’) and are used to
determine which part(s) of the self-model of SAMI are later used in the self-
explanation pipeline. A ‘kmodel’ classification would lead to using information
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Fig. 1. The organization of the TMK model of SAMI. Outer rectangles represent high-
level goals. Inner rectangles represent methods, with the circles within them represent-
ing sub-tasks and the arrows between them representing transitions. (We know that
the text in this figure is not readable). Our goal here is to convey the hierarchical
decomposition of the TMK model of SAMI, along with its size and complexity.

Fig. 2. This figure illustrates the state-transition specification of one method (‘RG
process’) in the TMK model of SAMI. The circles within the method represent the
individual tasks. The arrows connecting the tasks represent the state by state transi-
tions within this particular method.
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only from the domain knowledge part of the self-model. An ‘mmodel’ classifica-
tion would lead to localizing the relevant task and method information within
the self-model. With a ‘multimodel’ classification, a similarity search would be
conducted to find the relevant pieces of information from all knowledge, method,
and task parts of the self-model. Lastly, any question deemed as not being rel-
evant to SAMI would be classified as ‘can’t answer’. The Classifier employs
LangChain1 to create a prompt that uses pre-written templates describing each
of these classifications, along with the question to be answered. This prompt is
then sent to ChatGPT2, which returns a value for the classification, along with
a complexity ‘k’ value which is used to control the verbosity of the final answer
in later stages.

Fig. 3. The computational architecture and process flow of the self-explanation tech-
nique.

Next, the Localizer conducts the similarity search to find the most relevant
k pieces of information within the sub-model(s) identified as relevant by the
classifier. The Localizer uses the FAISS library3 to do a similarity search on
the input question and the natural language descriptions in the relevant sub-
model(s). The hierarchical organization of the TMK model (see Fig. 1) helps
in this localization. Like the Classifier, the Localizer employs LangChain and
prompts ChatGPT to determine the names of the relevant items from the sub-
model(s). These are then passed to the reasoning stage.

In the final stage, if the relevant items identified by the Localizer include a
method, the Reasoner uses Chain of Thought to walk step-by-step over the
specification of the identified method including the subtasks in the method

1 LangChain documentation.
2 OpenAI’s gpt3.5-turbo-instruct model has been used.
3 Meta’s FAISS documentation.

https://python.langchain.com/docs/get_started/introduction
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
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(see Fig. 2). This enables the answer to include descriptions of task annotations
on the state transitions within a method that might have led to a particular
outcome of SAMI. Like the Classifier and the Localizer before it, the Reasonser
once again uses LangChain to construct prompts to ChatGPT to compose the
final answer. Thus, the self-model technique makes multiple calls to ChatGPT
for different purposes in different stages.

4 Evaluation

Correctness and Completeness Study Design: To evaluate the self-
explanation technique, we used high-level, non context-dependent questions taken
directly from XAI question banks [19,20] such as “What is the source of the data?”
[19], ‘How often does the system make mistakes?” [19] and “What is the scope of the
output data?” [20]. Additionally, we modified some questions so that they become
more relevant to SAMI. For example, “What are the results of other people using
the system?” [20] was adapted as “What is the result of other students opting-in
to use SAMI?”.

In total, 57 questions were borrowed and adapted from the question banks.
Additionally, 9 questions specific to SAMI were created. These include questions
such as “What is a match?” and “How do you find matches for students?”.
The self-explanation technique of SAMI was prompted with each of these 66
questions and SAMI developers assessed each explanation for correctness and
completeness. We considered the definition of correctness as “nothing but the
truth” [21] and completeness as “the whole truth” [21]. For correctness, three
categories - yes, partial and no - were noted, and for completeness, two categories
- complete and incomplete - were used.

Result of the Correctness and Completeness Study: Table 1 summarizes
the completeness and correctness scores for each question category. The self-
explanation technique provided correct answers to 49 out of 66 questions; 37
of these 49 correct answers were also complete. For example, for the question,
“What is a match?”, the self-explanation method provided the answer “A match
is a student recommended by SAMI to the user who shares one or several sim-
ilarities with the user. This information is based on the task, method and goals
of the Social AI agent provided, which contains information about objects and
their properties that SAMI tracks in its system. The task, method and goals of
the Social AI agent states that a match is a student recommended by SAMI, and
this recommendation is based on shared similarities between the user and the
recommended student. These similarities could include location, hobbies, special-
ization, classes taken, and timezone”. Since this explanation did not contain any
incorrect information nor did it miss any other relevant correct information, it
was assessed to be both correct and complete.

The question “What are the different types of responses you are capable of
giving?” was answered with “I am capable of giving Individual Responses, which
are recommendations for matches based on the information provided by the user.
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Table 1. Results of categorising all 66 questions that were used to evaluate the self-
explanation technique, a representative question for each category along with their
adaptation and corresponding completeness and correctness results

Category # of

Questions

Example Question(s) Completeness

Scores

Correctness
Scores

Input 4 What kind of data does
SAMI learn from?
What is the source of
the data?

Complete: 2/4
Incomplete: 2/4

Correct: 3/4
Partially Correct: 1/4
Incorrect:0/4

Output 22 How can I best utilise
SAMI’s output?
What kind of output
does SAMI give?

Complete: 16/22
Incomplete: 6/22

Correct: 14/22
Partially Correct: 2/22
Incorrect:6/22

How
(global)

17 Is location used or not
used in matchmaking?
Are hobbies used or not
used in matchmaking?

Complete: 12/17
Incomplete: 5/17

Correct: 14/17
Partially Correct: 2/17
Incorrect: 1/17

Why not 1 Why would two students
not be matches?

Complete: 1/1
Incomplete: 0/1

Correct: 1/1
Partially Correct: 0/1
Incorrect: 0/1

Others 10 What are the result of
other students opting-in
to SAMI?
How will I be affected if
other students use or
not use SAMI?

Complete: 10/10
Incomplete: 0/10

Correct: 9/10
Partially Correct: 1/10
Incorrect: 0/10

Others
(context)

3 Who is responsible for
this system?
Who are the authors?

Complete: 2/3
Incomplete: 1/3

Correct: 0/3
Partially Correct: 2/3
Incorrect: 1/3

SAMI Spe-
cific
Questions

9 Why am I matched with
a particular student?
What entities do you
use in matchmaking?

Complete: 6/9
Incomplete: 3/9

Correct: 8/9
Partially Correct: 0/9
Incorrect: 1/9

These responses are based on the entities I extract from the user’s introduction
post, such as location, hobbies, specialization, classes taken, and timezone.”.
Whilst this is correct, it is incomplete because SAMI is capable of providing
individual, summary and feedback responses. Saying it only provides individual
response makes the answer incomplete. 12 of the correct answers were incom-
plete. Some answers given by the self-explanation method were partially correct.
Such partially correct answers were given to 8 of the 66 questions. The question,
“What are your limitations?” received an answer as, “I am a software system
called SAMI, and my main limitation is that I can only mediate social interac-
tions among students who have opted in to use me. I do this by extracting entities
such as location, hobbies, specialization, classes taken, and timezone from their
introduction post and connecting them to others based on similar entities. How-
ever, I am limited to only students who have opted in and have included the
#connectme optin tag in their introduction post in the ED online discussion
forum. Additionally, I am limited to only students who are enrolled in one of
the five specializations offered by Georgia Institute of Technology for its Com-
puter Science Masters students.”. This answer is evaluated to be partially correct
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because even though the first part around the opt-in limitation is correct, the
second part around being only limited to students in one of the five specializa-
tions is incorrect. On the other hand, the answer is complete as it’s not missing
any other relevant information.

Incorrect answers were given to only 9 out of the 66 questions. 6 of these
9 incorrect answers were to questions belonging to the ‘Output’ category - this
could be attributed to the fact that there’s no output specified in SAMI’s self-
model, since it does not have a static output. For example, “What does the output
of SAMI mean?” received an answer as, “The output of SAMI refers to the result
or outcome of the system’s task, which is to mediate social interactions among
students who have opted in to use SAMI. However, according to the given task,
method and goals of the Social AI agent, the output for this specific task is not
specified, so it is not possible to provide a specific answer. It is recommended to
ask other questions that may be answered with the information provided in the
task, method and goals of the Social AI agent”. This answer was evaluated to
be incorrect (and incomplete) as it doesn’t correctly explain what the output of
SAMI means.

In total, 48 out of 66 answers were complete (with 18 being incomplete).
Questions like “What does a match mean?”, “What type of matches does SAMI
give?” and “What kind of output does SAMI give?” received complete answers,
whilst questions such as “What data is the system not using?” [19] and “What
is the system’s overall logic?” [19] received incomplete explanations. We expect
the completeness of SAMI’s self-explanations to improve with the completeness
of its TMK self-model.

5 Conclusions

Our computational technique for self-explanation in AI social assistants com-
bines classical knowledge-based methods with modern generative AI methods.
The technique for self-explanation leverages ChatGPT to introspect over a TMK
self-model of the AI social assistant to generate explanations about its function-
ing. Our preliminary analysis of the self-explanation technique showed that it is
capable of providing complete and correct explanations about the inner workings
of SAMI provided that the question asked was relevant to the TMK self-model
of SAMI and the self-model itself was complete and correct. We tentatively con-
clude that introspection by generative AI on a self-model of the AI social assis-
tant is a promising way of generating self-explanations and thus merits further
investigation.

Acknowledgements. This research has been supported by NSF Grants #2112532
and #2247790 to the National AI Institute for Adult Learning and Online Education.
We thank members of the Design & Intelligence Laboratory for their contributions to
this work.
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Abstract. Learning analytics (LA) refers to the collection, analysis, and presen-
tation of big data to assist teachers in optimising learning conditions. Although
LA has made contributions, it still has not met students’ needs because it does
not provide sufficient actionable insights that prioritise learning over analytics.
Moreover, the degree of LA adoption is still limited, and students and teachers
who do adopt LA do not engage with it consistently. Our research aims to examine
students’ perspectives of adopting LA. The research question is as follows: “What
are students’ learning perceptions and satisfaction under learning analytics-based
guidance?” A qualitative study that included interviews and a perception survey
was conducted at a university in Greece. The factors that affected the adoption of
LA were performance expectancy, feelings, and guidance, according to the find-
ings. Student satisfaction was also high with LA-based guidance. We discuss the
implications and future research for students adopting LA.

Keywords: Learning analytics adoption · Higher education · Co-design ·
Students’ perceptions · Qualitative study

1 Introduction and Related Work

Learning analytics (LA) is a growing community that has emerged for identifying stu-
dents’ behaviour and performance. Learning analytics is a type of intelligent data use
transforming data into valuable knowledge, offering students and educators learning
insights and evidence-based interventions (Guzmán-Valenzuela et al., 2021). However,
there exist issues, particularly with student learning and its implications (Banihashem
et al., 2022). According to Viberg et al. (2018), LA appears to place greater emphasis
on analytics than on learning (Gašević et al., 2015). Furthermore, a transition from a
technological to an educational perspective is required (Tzimas & Demetriadis, 2024).
Learning analytics has not yet been used to its potential because LA recommendations
do not provide enough actionable information to instructors and students (Tzimas &
Demetriadis, 2023). Furthermore, Tzimas and Demetriadis (2021b) reported a slight
increase in student learning performance through LA. While a substantial corpus of
literature about technology adoption in the context of higher education exists, there
is limited research on LA about factors that might promote the decision to adopt and
implement LA in HEIs (Hilliger et al., 2024). Our focus is on how students perceive
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A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 361–368, 2024.
https://doi.org/10.1007/978-3-031-63028-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63028-6_30&domain=pdf
https://doi.org/10.1007/978-3-031-63028-6_30


362 D. Tzimas and S. Demetriadis

the adoption of LA and, thus, how they describe their motivation for LA adoption. In
particular, we enacted an intervention that involved displaying a traffic signal indicator
message to convey the performance of each student and an online interview with the
instructor for self-assessment. The objective of the research was to investigate students’
learning perceptions with LA-based guidance.

There are specific studies on students’ perceptions and emotions around LA (Kitto
et al., 2017). In Ifenthaler’s (2017) study, network graph analysis demonstrated the ability
of LA design to improve learner satisfaction. Because there is limited research on LA-
based feedback satisfaction (Demmans Epp et al., 2020), we investigated whether our
results align with the existing findings. Nonetheless, after guidance from LA support,
students’ opinions require further research in order to extract insights regarding feedback
satisfaction and thus students’ motivation to adopt LA. Qualitative techniques may be
valuable for investigating students’ perceptions of LA and how they can become more
actively involved (Guzmán-Valenzuela et al., 2021). Finally, we investigate the following
research question:

“What are students’ learning perceptions and satisfaction under learning analytics-
based guidance?”.

In the following sections, we illustrate the research design and study results, followed
by a discussion and conclusions.

2 Proposed Methodology

2.1 Learning Design

Our instructional design adheres to the flipped classroom, motivational interviewing,
and ethical pedagogical concepts. The flipped classroom instructional strategy is com-
monly used in blended and online learning environments. It allows students to manage
time specifically for completing tasks that need higher-order knowledge (Jovanovic
et al., 2017). Moreover, motivational interviewing teacher guidance for effective class-
room management is a collaborative conversation approach that strengthens students’
incentives to modify their behaviours (Zuckoff, 2012). Finally, we use ethics to foster
trust among educational stakeholders by addressing the following guidelines (Tzimas &
Demetriadis, 2021a): providing informed consent, promoting student autonomy, and
ensuring that instructor feedback motivates students.

During the third week, we sent messages to all the students about LA-supported
actions. The instructor initiated the messages. Similar interventions were conducted
weekly, as follows; “We are providing you feedback after reviewing your participation
and performance. I am attaching for self-reflection your grades in the exercises and the
grades of your fellow students. I encourage you to study the learningmanagement system
options for your participation concerning your peers.” Finally, wemodified motivational
interviewing into an intervention that addressed student behaviour through Zoom dis-
cussions. The time was selected during the fifth week in order to ensure sufficient data
for discussion following the monitoring of student performance and participation. Every
interview lasted approximately 20 min. The students participated in a reflective process,
explaining how the interventions made sense.
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2.2 Research Design

This researchwas conducted in a thirteen-weekundergraduate course during theCOVID-
19 pandemic. An informatics department of a Greek HEI provided this course online. A
total of one hundred and ten students took the course. Finally, twelve students dropped
out, and fifty-eight passed the course. The course covered how to conduct scientific
research and write a thesis. The instruments used to collect student opinion data (regard-
ing perceptions and satisfaction) included an opinion-mining survey after the course,
interviews, and a poll. The researchers designed a survey consisting of three open-ended
questions and twenty-two Likert scale items.

Table 1. Guide for interviewing with the students

Questions

How would you describe your learning analytics-based learning experience?

What changes should you use to enhance your performance?

How would you evaluate your current progress?

To what extent do your test scores align with those of your peers?

What emotions are evoked in you by learning analytics?

Do you have any further observations that haven’t yet been discussed?

Qualitative data were gathered: perception survey data were used to measure student
satisfaction, and semi-structured interviews were used to extract student perspectives
regarding the adoption of LA. We employed content analysis to interpret patterns in
the survey data. In parallel, we used thematic analysis to gather motivational interview
data and extract common themes. Consequently, we posed questions in order to obtain
viewpoints (Table 1). We used open responses from students and frequency analysis
to develop a taxonomy for categorising comments. This inductive reasoning approach
indicates that the detected themes are closely linked to the data, but they do not align
with a pre-established coding scheme.

3 Results

Thirty-four students participated in the survey (Table 2), with questions emphasising
student satisfaction and LA-based guidance usefulness. The findings from the content
analysis indicate that students expressed satisfactionwith the quality of the interventions.
Most participants reported that the interventions were beneficial, comprehensible, and
actionable. The question “What emotions does the use of learning analytics evoke?”,
primarily elicits feelings of encouragement (n= 14), self-confidence (9), and worry (8).

Following the response to the open-ended question, “Please share your thoughts on
the experience of using learning analytics,” the students’ perspectives were gathered as
follows: “I desire to have this guidance available in other courses”; “Learning analytics
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Table 2. Overview of the descriptive statistics from the student survey.

Survey Statements Mean (Standard Deviation)

LA quality

Learning analytics helped increase participation 4.9 (1.6)

The guidance on how to utilise learning analytics was sufficient 5.0 (1.6)

Efficacy of LA on self-regulated learning skills

I prefer using learning analytics in the educational process over
traditional ways

4.7 (1.6)

Learning analytics led to putting more effort into the course 4.4 (1.7)

Student satisfaction with LA

Learning analytics provided an enjoyable educational experience 4.9 (1.5)

Learning analytics increased my motivation to actively engage
in the course

4.8 (1.5)

Motivation to use LA

A discussion was held to elucidate the learning analytics findings 5.0 (1.6)

Learning analytics facilitated my course awareness 5.2 (1.3)

assisted me in understanding my performance compared to other students”; and “I prefer
to configure learning analytics to suit my needs”. Responses to the question “How did
learning analytics facilitate the learning process?” centred on the themes of motivation,
awareness, and persistence.

In parallel, we extracted the subsequent findings from a poll of seventy-five stu-
dents completed in the seventh week. In the question “Do you monitor analytics for
your academic performance?”, forty-eight students answered affirmatively, whereas ten
answered negatively. In response to the question “Doyoufind reflection needful?”, thirty-
six students answered “Yes, I am more aware”, eleven answered “Yes, I am becoming
competitive”, and nine answered, “No, it makesme anxious”. Finally, when asked “What
positive emotions do learning analytics evoke in you?”, thirty-five students answered
that they considered it interesting, twenty-five were motivated, and twenty were satis-
fied. On the contrary, for the question “What negative emotions do learning analytics
evoke in you?”, twenty-seven students answered curiosity, eighteen answered anxiety,
and 10 answered irritability.

Additionally, a thematic analysis was used during the interviews. The analysis of
the discussions revealed eleven common themes. Combining the themes and refining
their semantics yielded the eight critical themes listed in Table 3. For instance, a number
of students indicated modifying their behaviour throughout the semester. This pattern
indicated that students at risk of withdrawing may change their behaviour following
the intervention, and the use of motivational interviewing may intensify this risk. Five
students stated that they considered dropping out when they finally passed the course.
Finally, some students reported that they were not involved in the design process.
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Table 3. Interview results.

Concept Evidence Quotations Frequency %

Behaviour change The learning analytics-based alert woke me up, and I
made the decision to begin exercising

52

Guidance My grades were lower than the class average, so this
comparison prompted me to change my study habits

45

Support seeking Learning analytics services encouraged me to seek help 39

Motivation Learning analytics motivated me to persist in my
efforts

34

4 Research Outcomes

Table 2 demonstrates a high level of student satisfaction, aligningwith the results reported
by Nguyen et al. (2017). The positive attitudes of the students on the efficacy of LA
services were in line with existing literature (Smith, 2019; Tzimas &Demetriadis, 2024)
and our poll findings (where most students acknowledged the utility of LA). As stated by
Viberg et al. (2018), the findingsmentioned above enhance our comprehension of LA in a
qualitative manner, rather than relying on technical approaches. Moreover, the students’
responses revealed emerging themes related to the quality of LA, the efficacy of LA, and
the incentive to utilise it. Specifically, the requirement for timely feedback to facilitate
self-reflection (Bodily & Verbert, 2017) is derived from the following quotations: “It is
inadequate to obtain good grades without receiving feedback”; and “Few teachers are
concerned about whether students are progressing at a similar rate.”

According to the interviews, our conclusion is that students held a favourable percep-
tion of LA-based guidance. The main subjects we identified were behavioural change,
motivation, seeking support, and time allocation. We observed students’ satisfaction
with LA to support awareness and self-reflection, aligning with the conclusions stated
by Arnold and Pistilli (2012). According to a student’s description, “The guidance I
received for utilising LA was helpful”. However, students were initially unfamiliar with
working with LA-based feedback.

To investigate the differences between datasets, some students expressed dissatisfac-
tion and anxiety; thus, HEIs cannot overlook this crucial perspective. This unexpected
insight generates an unforeseen interpretation because previously identified themes high-
light that LA-based feedback may improve learning outcomes. A plausible hypothesis
is that peer comparisons have a demotivating effect. Roberts et al. (2016) found that
certain students were not interested in utilising services that facilitated comparisons
with their peers. When questioned about their views on progress, the students expressed
anxiety. Barreiros et al. (2023) proposed the inclusion of student opinions in LA-based
decision-making, namely through participatory and co-design approaches. However,
these opinions are often not considered (Buckingham Shum et al., 2019). Thus, while
a university may see feedback and teacher effort as beneficial, they may not always
consider what students want (Dwivedi et al., 2019).
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In contrast, most students acknowledged the value of LA-based guidance. Many
quotations exemplified this mindset: “Learning analytics provides motivation and reflec-
tion, fostering students to be more productive”; and “Using learning analytics enabled
me to achieve high rankings and boost my self-confidence”. We conclude that LA-based
guidance can have a significant impact on improving self-regulation and performance
expectancy. Additionally, peer comparisons have the potential to motivate students to
enhance their skills (Tzimas & Demetriadis, 2024).

A scenario in student-facing LA involves students being presented with a dashboard
but failing to comprehend its significance to them (Bodily&Verbert, 2017) due to the lack
of explanatory feedback. This statement contradicts the students’ extracts throughout the
study interviews: “It is advantageous. I wishwe had this specific guidance in every class”
(obligation to take action) and “The use of learning analytics helped me gain insight into
my level compared to other students” (reflection).

Regarding self-regulated learning skills, LA-based guidance facilitates students prac-
tising themmethodically. By adhering to themotivational interviewing rules and express-
ing their thoughts regarding their study behaviour, the students were more likely to prac-
tise these skills. Ultimately, by reflecting on the students’ subjective perceptions, we
noted that the students reported adequate assimilation of self-regulated learning abilities
as the interventions progressed. This finding provides evidence in favour of Kitto et al.’s
(2017) claim that students should evaluate their behaviour by employing self-regulation
techniques.

Engaging students in the LAdesign process can be complicated and time-consuming.
Nevertheless, involving them in participatory and codesign approaches can transform a
failing prototype into a successful system.As a result, shiftingLA to something donewith
students is a human-centred learning analytics strategy (Campos et al., 2024). Under-
standing students’ values and needs through inter-stakeholder communication leads to
learners’ agentic positioning (Dimitriadis et al., 2021). Students’ statements, “Learning
analytics tools should be tailored to my requirements” and “It would be advantageous
if I could adjust LA according to my personal preferences,” provide the above insights.

The poll results indicate thatmost students recognised the usefulness of LA feedback,
with a percentage of 83%. The predominant positive emotions encompass motivation,
satisfaction, and encouragement, whereas the negative emotions consist of anxiety, irri-
tability, and confusion. An analysis of the survey, poll, and motivational interviewing
data sources revealed similarities among the datasets. The consistent themes observed
were encouragement, self-confidence, persistence, and stress.

5 Conclusions

This paper addresses the critical issue of students’ perceptions of LA adoption in edu-
cational environments. Through a qualitative study conducted at a Greek university,
the research investigates factors influencing the adoption of LA and examines student
satisfaction with LA-based guidance. The findings reveal positive attitudes towards the
usefulness of LA services and highlight the significance of high-quality feedback and
timely guidance in supporting students’ self-reflection and motivation.

Finally, we acknowledge the constraints in interpreting the results. The sample size
was small, and the data only covered one semester of a specific course. Our intention
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is to replicate this study in nonformal education settings, with new groups of teachers
and students from varied backgrounds, who represent large populations. This way, we
could observe the applicability of our findings to various contexts. Future studies could
investigate the confirmation stage in order to have a thorough understanding of the
adoption process.
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Abstract. In the last two years, thanks to the advent of generative
AI, new avenues are opening up in its use in the educational field, e.g.
through the use of ChatGPT. But, while generative AI is opening up new
avenues for both teaching and learning, there are no proposals for its use
in the context of students with Dyslexia and in general for students with
Specific Learning Disorders (SLD), that afflict between 10 and 15 percent
of people worldwide. In this paper we present AI4LA, a web intelligent
chatbot based on generative AI, with the aim to help dyslexic students
during their learning process. This system is capable of analyzing con-
versational data to model students’ understandings and misconceptions,
thereby offering personalized educational support. Significantly, we high-
light the chatbot’s ability to create Concept Maps from conversations,
visually representing the student’s knowledge structure and progression.
An evaluation of the effectiveness of the system is presented, in a real-
world educational settings, based on feedback from a sample of dyslexic
students. The findings suggest that our system holds great promise in
revolutionizing the way dyslexic students engage with educational con-
tent, making learning more accessible, interactive, and effective.

Keywords: Dyslexia · Intelligent Chatbot · LLM

1 Introduction

The shift towards distance learning has gained momentum in recent years, espe-
cially due to the COVID-19 pandemic, leading to an increase in the adoption
of Massive Open Online Courses (MOOCs) across all educational levels [7].
This transition has posed significant challenges in providing personalized sup-
port to students, particularly those with Specific Learning Disorders (SLDs) like
Dyslexia, Dysorthographia, and Dyscalculia, who face substantial hurdles in envi-
ronments lacking direct teacher engagement [12,14]. Dyslexia, the most prevalent
SLD, affects between 5% and 15% of the global population, impacting reading,
writing, and occasionally spoken language comprehension [1,2]. The development
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 369–377, 2024.
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of assistive technologies such as speech recognition, text-to-speech, and smart
pens has been crucial in supporting dyslexic learners [3,6,11,16]. Furthermore,
advances in Deep Learning and Large Language Models (LLMs) like ChatGPT
have facilitated the creation of tools like the system we present here: AI4LA-
Artificial Intelligence for Learning Assistant, which supports dyslexic students
by adapting dialogues and generating personalized Concept Maps (CM)s based
on their specific needs1. Our initial trials of AI4LA in a high school setting have
shown promising results, enhancing engagement and learning outcomes for stu-
dents with dyslexia. This paper details these findings, discusses the integration
of generative AI in educational settings, and outlines future research directions

2 Related Work

This section examines support systems for individuals with dyslexia, particu-
larly highlighting the AI4LA system’s use of CMs, which visually represent a
knowledge domain as a direct graph, formed by nodes (the concepts) and the
connections among them (the semantic relationships). These CMs, dynamically
generated from chatbot-learner dialogues, help minimize the reliance on textual
explanations, addressing the challenges dyslexic learners face in creating such
maps due to difficulties with reading and key relationship identification [8].

Beyond CMs, AI4LA leverages advanced generative AI technologies like
Retrieval Augmented Generation (RAG) to enhance learning by generating topic
summaries, distinguishing it from other tools that lack dynamic CM customiza-
tion capabilities. Comparative analysis shows that other applications also sup-
port dyslexic learners. The ALEXZA application [13] offers features like text-to-
speech and adjustable reading speeds, using machine learning to classify text dif-
ficulty. The GARY system enhances reading through eye-tracking and auditory
narration, significantly improving comprehension [15]. Additionally, the RALF
framework uses Cellular Learning Automata (CLA) to tailor educational content
for Persian students with dyslexia, enhancing learning effectiveness by 27% dur-
ing COVID-19 lockdowns [10]. In [5], the TutorChat system is presented. This
system is a chatbot based on ChatGPT, able to automatically build multime-
dia CMs: each node is connected to images and video concerning the knowledge
domain under study. Our system, however, offers different types of CMs whereas
Tutorchat only builds them based on the answer to a specific question using
Google for images and youtube for videos.

Overall, the AI4LA system’s integration of generative AI and CMs uniquely
positions it in the educational support landscape for dyslexic learners, setting
new standards for personalized educational tools.

3 The System

In the rapidly evolving landscape of Natural Language Processing (NLP), two
powerful techniques have emerged as game-changers, reshaping the way we har-
ness the potential of language models: Fine-Tuning [4] and Retrieval Augmented
1 https://dyslexia2024.replit.app.

https://dyslexia2024.replit.app
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Generation (RAG) [9]. These methodologies have revolutionized the capabilities
of language models, addressing critical limitations and unlocking new possibili-
ties in various NLP applications. Since our system uses both of the above tech-
nologies, it is worth briefly summarising their key features and how were used
for a full understanding of the system.

Fine Tuning is essentially a re-training of a Deep Learning model. In the
context of refining LLMs, Adaptive Fine-Tuning (AFT) and Behavioral Fine-
Tuning (BFT) refer to specific methodologies used to adjust and improve the
model based on additional data or feedback. AFT involves further training a pre-
trained model on a specific, often smaller, dataset that is tailored to the needs of
a particular application or domain, adapting the model to be more proficient in
areas that might not have been adequately covered during the initial broad train-
ing phase. BFT, on the other hand, focuses on adjusting the model’s outputs
to match desired behaviors more closely, often in response to specific user feed-
back or desired interaction styles. This method is less about domain knowledge
and more about how the model interacts-its style, tone, response formulation
and so on. In our case, the fine-tuning process we employed is an example of
BFT. The dataset we used was specialized on a set of simulated conversations
between the chatbot and dyslexic students, with the aim to train the chatbot
to interact properly with students with dyslexia. This work was supported by a
cognitive psychologist. The dataset is composed of 80 conversations, in the form:
Ci ≡ {si, (uij , aij)}, where si (i=1,. . . ,80) is that part of the conversation used
to train the role of the system and (uij , aij) are a set of interactions in the form:
<question posted by the user,answer prompted by the chatbot>. So, while each
record Ci has only one si, it can have a variable number of couples (uij , aij),
depending on the knowledge domain concerning the interaction. Figure 1 shows
an example of such kind of record with j = 2.

Fig. 1. A complete record of the fine-tuning dataset. In this example, first we train the
chatbot to have the role of an assistant to answer to dyslexic people. Second, we have
two simulated interactions chatbot-user. In this case, j = 2.
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In this way, we obtained a neural model customized to properly interact with
dyslexic people.

RAG provides a way to optimise the production of an LLM with targeted
information without changing the model behind it; that targeted information can
be more up-to-date than the LLM, but also more precise in the case of specific
organisations and sectors. This means that the generative AI can provide more
appropriate responses to prompts, and base those responses on highly current
data [9]. A RAG model acts in a pipeline configuration, following these steps:
Retrieve, Augment and Generate.

The system RAG pipeline uses Chroma DB2. Chroma DB is an open-source
vector store designed for storing and retrieving vector embeddings. Its primary
function is to save embeddings along with metadata for use later by large LLMs.
It supports the creation, storage, and querying of embeddings, making it a valu-
able tool for developers building AI applications that require efficient handling
of vector embeddings, as in the case of our system. Figure 2 shows the functional
architecture of the system.

Fig. 2. The Fine-Tuned RAG Pipeline embedded in the AI4LA system. For dyslexic
people the system makes use of the fine-tuned model.

In particular, our system empowers users to gather data from various sources
such as PDFs, text documents, and YouTube videos. Subsequently, this collected

2 https://www.trychroma.com/.

https://www.trychroma.com/


AI4LA: An Intelligent Chatbot for Students with Dyslexia 373

data are utilized to generate a Chroma DB collection, which serves as valuable
context for enhancing the capabilities of the RAG model. When a user submits
a query, the RAG system uses the indexed data and vectors to perform efficient
searches. The system identifies relevant information by comparing the query
vector with those stored in Chroma DB. In our implementation we used the
cosine similarity measure to find the most relevant chunks inside the vector DB.
The LLMs then use the retrieved data to craft appropriate responses. Finally,
we have enriched the RAG Pipeline with those finely-tuned models specifically
designed to meet the unique requirements of dyslexic users and discussed in the
previous paragraph.

The system offers a range of features which ensure that every interaction is
tailored to the student’s unique preferences and needs: (i) a typeface designed
by Google, against some common symptoms of dyslexia; (ii) Context Summa-
rization: When the learner uploads her own context, the system enables her to
request a summary. This summary provides an overview of the context’s key
points, ensuring the learner has a clear understanding of the topic at hand dur-
ing conversations; (iii) Contextual Concept Maps: When the chatbot provides an
answer, the user can generate a CM for that response; (iv) Speech-to-Text: The
student can post the question using voice instead of writing and the system will
transcribe it into text, streamlining communication; (v) Export of Full Conver-
sation: The system allows users to conveniently export the entire conversation,
preserving it for reference or future analysis. In addition, we placed a significant
emphasis on user customization. In fact, users have the power to adjust the level
of contextual CM generation and conversation memory. This allows the chatbot
to fully adapt to their needs and preferences, making the interaction even more
personal and tailored to the user.

Here we show a brief case study of the chatbot at work. After entering the
system using his credentials, the (dyslexic) student entered a PDF document
into the system, concerning operations between binary numbers. He then asked
the following question: Please show me an example of addition of two binary
numbers. Consequently, the chatbot prompts the example. After that, the stu-
dent asks for the CM that is immediately drawn in the space below the answer,
as shown in Fig. 3. Finally, the student can download the CM in order to better
fix the concepts to be studied.

4 Methods

This section details the initial experimentation with the system, which involved
a sequence of steps: selecting a sample, administering a text comprehension
test, and distributing a happiness questionnaire. The study included 23 dyslexic
students, aged 14 to 18, from a technical high school in Italy. The test chosen
was based on a newspaper article titled His Majesty the Owl Blinded by Lights,
selected due to its relevance to text comprehension-a critical skill for dyslexic
students-and because it mimics the standardized Invalsi Test used in Italian
education. Students used the intelligent chatbot pre-loaded with the text to



374 S. D’Urso and F. Sciarrone

Fig. 3. The brief case study concerning the learning of binary numbers.

assist them in understanding and answering questions about the article. They
had 45 min to complete the test in a fully anonymized setting to protect their
privacy, using unique credentials and pseudonyms. Prior to the test, students
were briefed on how to use the chatbot, despite their previous general experience
with ChatGPT. This was their first opportunity to query about self-provided
texts, a feature enabled by this system. Both paper and digital versions of the
test were available, and each student worked at a dedicated PC station. After
the test, they completed a feedback questionnaire. Data analysis was performed
on both the chatbot interactions and questionnaire responses.

In the analysis of the data generated by the experiment, we distinguished two
keys of study the first concerns an analysis of student-system interactions and
utilization, as retrieved from the log file. The second concerns the questionnaire
taken by the sample after the session.

Student-System Interactions. Our analysis identified four key variables in
student interactions with the system: Question Precision, Seeking Clarifications,
Use of CMs, and Low Usage. From the data (see Table 1), we observed that
slightly more than 50% of students asked Precise Questions, indicating that
the chatbot is a valuable resource for direct answers, aiding in test prepa-
ration. Approximately 20% sought clarifications or engaged more deeply with
the chatbot’s responses, demonstrating its role in fostering an interactive learn-
ing environment. Notably, 65% of students utilized the CMs generated by the
system, showing the effectiveness of this feature in helping students visualize
and organize information. However, a small segment, about 5%, showed Low
Usage of the system, either by not using it or interacting minimally. Investigat-
ing the reasons behind this could provide insights into potential improvements
in system design and functionality. Overall, the chatbot appears to effectively
meet the needs of most students by providing direct answers, enabling deeper
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understanding, and supplying helpful visual aids, though further research could
enhance its appeal to all users.

Table 1. The four variables on which the system utilisation analysis was based.

Chat Activities %

Question Precision 50%

Seeking Clarifications 20%

Use of CMs 65%

Low Usage 5%

The Questionnaire. After the work session, all students completed a ques-
tionnaire designed to assess their enjoyment, engagement, and the usability of
the system. The questionnaire was distributed using the Google Form module3

and consisted of sixteen closed-ended questions and one open-ended question.
The questionnaire is depicted in Fig. 4. Crafted with the assistance of a psy-
chologist specializing in dyslexia, the questions primarily focused on usability,
engagement, and the potential effectiveness of AI4LA as a supportive tool for
dyslexic learners.

Fig. 4. The questions composing the questionnaire submitted to the sample after the
use of the system.

The closed-ended questions were grouped according to three research themes:

– Group G1 ={Q4, Q5, Q6, Q7, Q8, Q9, Q12} focused on assessing the system’s
ease of use.

3 https://forms.gle/RNKCxDjuEyu1RjdU9.

https://forms.gle/RNKCxDjuEyu1RjdU9
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– Group G2={Q3, Q8, Q10, Q11, Q12, Q13, Q14, Q16, Q15} aimed to evaluate
the acceptance and appreciation of IA4LA as a study support tool.

– Group G3={Q3, Q6, Q8, Q9, Q10, Q11, Q14} intended to measure the per-
ceived effectiveness of the system.

Responses were gathered using a 5-point Likert scale, with specific questions
designed inversely to ensure analytical consistency. Normalization was applied to
invert responses for Q5 and Q7 during analysis, aligning them with the standard
scale direction used in other questions. Data analysis involved calculating the
average number of occurrences for each scale value across the groups, facilitating
a detailed evaluation of user feedback.

Table 2. Occurrences of the 5-scale values in the answers to the questionnaires, aggre-
gated according to the three groups/RQs.

Avg. 1 Avg. 2 Avg. 3 Avg. 4 Avg. 5

Group 1 0 0.78 1.8 4.23 8.98

Group 2 0 0.41 2.21 4.31 8.76

Group 3 0 0.22 1.9 4.78 8.89

Initial findings from this analysis indicate a lack of low-value responses, with
the higher values on the scale dominating, suggesting a positive reception towards
the AI4LA system. The detailed results from each group are summarized in
Table 2, providing a clear indication of high user engagement and the perceived
effectiveness of the system.

5 Conclusions

In this article, we presented AI4LA, an intelligent web chatbot based on genera-
tive AI to support the learning of dyslexic students. The system has the charac-
teristic of exploiting all the potential offered by generative AI, through the use of
two procedures: Fine-Tuning and Retrieval-Augmented Generation, which allow
the system to offer good student support, such as the possibility of constructing
concept maps and contextual summaries. We presented an initial experiment
with a sample of 23 dyslexic students, coming from an Italian technical high
school, obtaining positive feedback, along three lines: usability, engagement and
perceived effectiveness. As future developments, we plan to carry out a more
wide-ranging experiment to validate the system.

Acknowledgement. We would like to express our sincere gratitude to Universitas
Mercatorum for its financial support in the development of this project (Grant No.
16-FIN/RIC 2023).
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Abstract. In recent times,Massive OpenOnline Courses (MOOCs) have become
increasingly popular for offering accessible and versatile learning opportunities to
a broad audience. However, specific tasks that are necessary in such systems and
usually require human involvement, like grading assignments, can be difficult to
automate and scale. Furthermore, recent studies have highlighted the capabilities
of Large Language Models (LLMs) in a variety of natural language processing
tasks, yet the effectiveness of these models in evaluating assignments in educa-
tional settings like MOOCs is still an under-researched field. In this paper, we
introduce a novel multi-agent architecture, powered by LLMs and the AutoGen
framework, that aims in automating the grading of subject-agnostic student assign-
ments. Additionally, we present interaction examples between the agents during
grading coding assignments, shedding light on the system’s potential to mimic
human-like grading nuances and incorporate the tutor’s feedback. This research
aims to demonstrate the advancements in automated grading, emphasizing the role
of multi-agent systems in educational technology.

Keywords: Automated Grading · Large Language Models ·Multi-Agent
Systems ·MOOCs

1 Introduction

Massive Open Online Courses (MOOCs) have made quality education more accessible,
but the scalability of personalized assessment remains a challenge as automated grading
systemsoften lack thenuanceof humangraders.Recent advancements inAI andMachine
Learning, especially Large Language Models (LLMs) like GPT-3.5 and GPT-4, have
transformed the field of Natural Language Processing (NLP) [1] and show potential
in implementing classic NLP tasks without the need for explicit supervision [2], thus
showcasing their potential as valuable tools in the educational sector, especially for tasks
like the automation of grading processes in MOOCs [3].

This paper proposes EvaAI, a novelmulti-agent framework powered byAutoGen [4],
designed to automate the grading of student assignments using LLM-powered agents,
building on the foundation laid by previous research, which explored their efficacy
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in such a task [5]. EvaAI employs a two-step process: a Reverse Proxy Agent routes
the grading task to the appropriate Expert grader, which can have its own multi-agent
architecture and specialized LLMs.

The study focuses on EvaAI’s ability to provide accurate grades usingminimal initial
information compared to a single-agent system, the potential for customizing the grading
process through educator input, and the system’s capacity to offermeaningful feedback to
students. EvaAI aims to streamline grading in MOOCs and enrich the feedback process,
contributing to the ongoing dialogue on AI’s role in providing quality, accessible, and
personalized education globally.

2 Related Work

The exploration of automated systems for grading and providing feedback on program-
ming assignments has a long history. Tools like Web-CAT [6], BOSS [7], and Course-
Maker [8] represent significant advancements in this area. Web-CAT offers automated
feedback and grading for programming taskswith a suite of analysis tools. BOSSdelivers
an automated platform for grading and managing submissions, whereas CourseMaker
supports educators with tools for test case creation and automated grading.

In 2013, a study [9] introduced a tool for generating feedback on Python assign-
ments in an MIT MOOC, notably using an error model to offer personalized advice
beyond identifying failing tests. Another system [10] for grading JAVA assignments
employed regular expressions for comparing student submissions against instructor solu-
tions, though this method has limitations due to the complexity of crafting regex patterns
and format constraints.

A semi-automated system for JAVA,ASys [11], evaluates submissions throughCom-
pilation, Analysis, and Testing phases, using a domain-specific language (DSL) for
code analysis via an assessment template, facilitating programmable evaluation of Java
assignments for correctness.

Research in [12] investigated the application of Machine Learning to assess correct-
ness in code submissions, testing various models including Naïve Bayes, SVM, Logis-
tic Regression, and NLP techniques such as RNNs, CNNs, and LSTMs, with CNNs
emerging as particularly effective for analyzing student code.

With the advent of Large Language Models (LLMs) like GPT from OpenAI, recent
studies [13] have examined their use in creating programming exercises, solutions, and
code explanations. Despite their benefits, these studies underscore the necessity for
human review to maintain the quality of AI-generated educational content.

3 System Architecture

EvaAI introduces a novel, two-tiered architecture aimed at automating the grading of
student assignments across various subjects. This system is designed to be both subject-
and rubric-agnostic, capitalizingon theflexibility and efficacyofLargeLanguageModels
(LLMs) in NLP tasks, to adapt to diverse educational needs. The architecture is primarily
divided into two critical steps: the initial routing of assignments and the specialized
grading process.
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Assignment Routing
The first step in EvaAI’s grading process involves the Reverse Proxy Agent. This agent
acts as the central coordinator within the EvaAI framework, responsible for the initial
assessment of incoming assignments. Upon receiving a task, the Reverse Proxy Agent
evaluates the nature and requirements of the assignment to determine the most appropri-
ate Expert grader to handle it. This determination is based on the assignment’s subject
matter, complexity, and specific grading rubrics provided. The Reverse Proxy Agent’s
role is pivotal in ensuring that assignments are directed to Expert graderswith the optimal
expertise and resources for accurate and efficient grading.

Specialized Grading
Once an assignment has been routed to the appropriate Expert grader, the second step of
the process begins. Each Expert grader within the EvaAI framework is a multi-agent sys-
tem itself, comprising several specialized agents that collaborate to grade assignments.
These Expert graders are subject-specific, such as coding exercises handled by a coding
expert, mathematics problems by a mathematics expert, and essays by an essay expert.
Two exemplary architectures of Expert graders are discussed to illustrate the grading
process:

• Grader-Reviewer Approach: The First Expert Architecture includes a Teacher agent,
a Grader agent, and a Reviewer agent. This configuration simulates a comprehensive
human educator’s grading process. The Teacher agent provides initial evaluations and
feedback, the Grader agent assesses the assignments against specific criteria, and the
Reviewer agent performs a final review to ensure accuracy and fairness in grading.

• Multiple Graders Approach: The Second Expert Architecture comprises a Teacher
agent and two or more independent Grader agents. This setup allows for multiple
independent evaluations of an assignment, enhancing the reliability and objectivity
of the grading process. The independent Grader agents assess the assignment and
provide their grades, which are then consolidated and reviewed under the supervision
of the Teacher agent.

In both configurations, a Group Chat Manager orchestrates collaborative dialogue
among agents in EvaAI, enabling them to assess, review, and finalize grades for assign-
ments, mimicking the nuanced decision-making processes of human grading commit-
tees. EvaAI’s dynamic group chat feature, supported by AutoGen, facilitates seamless
communication among specialized agents during the grading process. Agents share a
commoncontext and engage in conversationswithout adhering to apredefinedorder, sim-
ulating a natural, human-like discussion akin to a team of educators collaboratively grad-
ing assignments. The dynamic group chat, guided by role-play style prompts, ensures that
conversation flow remains relevant and aligned with the task, leading to more effective
problem-solving and decision-making among the agents.
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4 Methodology and Preliminary Results

For the purposes of this study, a number of characteristic examples from using EvaAI in
the automated grading of coding assignments were used, with the purpose of showcasing
the potential of using such a multi-agent architecture in this specific context. The dataset
used, as mentioned before, refers to the grading of code submissions in a Greek MOOC
setting, focusing on an introductory Python course, where EvaAI was asked to grade
such submissions. The specific Expert implementation used, named “Coder”, follows
the Grader-Reviewer approach, meaning that the Teacher agent asks the Grader agent
to initially grade the exercise, and the Group Chat Manager then asks for the Reviewer
agent to review the grade.

In terms of technical specifications for this specific experiment, the LLM that was
used to power all agents wasGPT-4, more specifically the “gpt-4–0125-preview” version
of the model, through OpenAI’s API. As described before, all agents were created by
utilizing theAutoGen framework, and the agents’ name, description and systemmessage
for the specific examples which used the Grader-Reviewer approach, were the following:

Grader.

name="grader", 
description="A grader that grades the student’s solution to a coding 
exercise based on a grading rubric. After initial grading, the grader 

receives a one-time feedback from the reviewer and revises the grade. 

Finally the grader return the final, reviewed grade to the teacher.", 

system_message="You are a grader. You break down the grading rubric 
into bullet points. You apply the rubric to the student’s solution 

and provide a grade (0-10). If needed, revise the grade based on 

feedback from the reviewer. 

Reviewer.

name="reviewer", 
description="A reviewer of the grader, that provides a one-time feed-
back to the grader’s initial grade.", 

system_message="You are a reviewer of the grader. Your job is to 
check the grade’s validity, based on the grading rubric. Provide a 

one-time feedback to the grader. If you find any mistakes and the 

grade has to be corrected, let them know. Do not disagree with the 

grader if the grading rubric has been applied correctly. You are a 

reviewer, not a critic." 

Finally, we utilized the Group Chat and Group Chat Manager functionalities of
AutoGen for implementing the conversation between agents, with the max rounds of
messages being set to 12.
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The assignment that the systemwas tasked with grading, asked the students to create
a Python program that evaluates whether a given year is a leap year. The program was
required to correctly apply the rule that a year is leap if it’s exactly divisible by 4, except
for century years, which are leap only if they’re exactly divisible by 400.

The sample rubric that was provided to the system for grading the student’s code,
had two main guidelines:

• Execution error: If the student’s code caused an error during execution, two points
were to be deducted for each occurrence of such an error.

• Wrong result: Four different sample inputs were provided as test values. Those were
“2004”, “1800”, “1600” and “1999”, with the purpose of testing if the student imple-
mented the correct logic in their code, to calculate the appropriate response for each
of these cases in regards to the year being leap or not. Two points were to be deducted
for each wrong result.

While the aggregated, quantitative results of the study, that includes this as well
as different experiments with different assignments, are still in the process of being
calculated and will be published in the future, in this section two characteristic examples
of such grading runs of EvaAI are being presented together with the appropriate context
for each run, that provide qualitative and promising insights regarding the ways that
such an architecture can be an improvement over single-agent approaches in automated
grading, how it can incorporate the tutor’s feedback in grading and how it can provide
useful feedback to the student, that is based on the specific scoring rubric. Since generated
text data from the agents was too lengthy to be presented here as a whole, excerpts are
being provided, and “…” represents extra generated text that has been omitted.

The first example refers to a casewhere the student’s code response to the assignment
was correct, however the Grader agent hallucinated by considering there was a typo in
the variable used for the results:

grader (to chat_manager): 
Grading the student's code based on the provided rubric: 

... 

**Execution error**: The student's code will execute without errors 

but there's a typo in the variable name ("disekto" is used instead of 

"disekto" after the condition) which would lead the program to always 

print `False`. 

... 

For the first, third, and fourth test cases, the output will be af-

fected by the typo, making the code return incorrect results for 2 

out of 4 tests due to the logical mistake rather than execution er-

ror. That would lead to a deduction of 4 points (2 points deducted 

for each incorrect result). 

... 

Final grade: **6/10** 
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In this case, the Reviewer agent corrected the Grader and explained that there was
no typo in the variable name, resulting in the grader revising the grade, showcasing
how such multi-agent approaches with dynamic conversation between agents have the
potential to avoid similar errors due to a single agent hallucinating.

reviewer (to chat_manager): 
Upon reviewing the grading done for the student's code against the 

provided rubric, there appears to be a misunderstanding regarding the 

issue with the variable name. The feedback mentioned a typo in the 

variable name ("disekto" is used instead of "disekto"), which seems 

to be a mention of an error that doesn't exist in the provided code 

snippet. The variable "disekto" is consistently named throughout the 

code, so there's no actual typo affecting the logical functionality. 

Thus, any deductions made due to this perceived typo are incorrect.  

... 

**Final grade should be: 10/10** 

 

grader (to chat_manager): 
Upon receiving the reviewer's feedback, I realize my mistake regard-

ing the variable name "disekto" in the student's code. My initial as-

sessment incorrectly identified a non-existent typo which influenced 

the grading outcome improperly. 

... 

**Revised final grade: 10/10** 

The second example, refers to a case where we used a sample tutor’s feedback for
the Reviewer agent to be more lenient, meaning that they should not get stuck up to the
letter of the grading rubric but grade more holistically. In the example, the student’ code
printed out the result instead of storing it to a boolean variable and returning that, which
was the instruction in the prompt. Here, the Grader agent originally tried to deduct eight
points (since all four test values would result in a string result instead of a boolean), but
the Reviewer agent corrected them, and suggested that the error should be considered as
one instance rather than four, but relevant feedback should be provided to the student.

We should also note that when as a tutor we used the opposite instruction to the
Reviewer, that is to stick to the grading rubric to the letter, there were multiple instances
wherewhen theGrader agent wanted to deduct less points for such an error, the Reviewer
actually advised for the full eight points to be deducted, suggesting that customizing the
system’s behaviour according to the tutor’s feedback is feasible to an extent.
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grader (to chat_manager): 
The provided student's code does not follow the exact instructions 

from the exercise prompt, specifically with the required output for-

mat and variable usage. Here's a breakdown based on the provided ru-

bric: 

... 

Initial grade: 10 

Deductions: 8 (for the variable name 'disekto' not being used and the 

lack of a return statement) 

Final grade: 2 

 

reviewer (to chat_manager): 
... 

Wrong result: The program provides the correct True or False output 

for the tested years; however, according to the exercise prompt, the 

code should assign the result to a variable named 'disekto' and not 

print it. Since the end result should be stored in 'disekto' and not 

printed, points should be deducted. There is no instruction in the 

rubric for this particular issue, but it would be reasonable to count 

it as one mistake despite occurring in four tests because it's a sys-

tematic error rather than separate occurrences. 

... from a holistic pedagogical perspective, and per the exercise 
prompt, the student should be instructed to correct the code to align 

with the required structure of output and use of variables. 

... 

Recommended actions: 

- Provide feedback to the student to adjust their code according to 

the exercise instructions. 

5 Conclusions and Discussion

In this paper, we introduced EvaAI, a novel framework leveraging Large Language
Models (LLMs) and a multi-agent architecture for automated grading. EvaAI has the
potential to offer improvements over single-agent systems. The collaborative nature of
the multi-agent model can add depth to the grading process, potentially reflecting a more
human-like assessment. Preliminary observations suggest that the multi-agent approach
contributes to grading precision and dependability. Leveraging a network of specialized
agents could streamline the grading process and provide feedback similar to human
educators, reducing educators’ grading workload.

Further research is needed to explore the full potential of multi-agent frameworks
for automated grading across a broader range of subjects and assignment types. Limita-
tions include the dependency on LLM availability and quality, as well as the increased
cost associated with multi-agent approaches. Ethical considerations surrounding AI in
education also warrant careful consideration.
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EvaAI represents a promising approach to automate and enhance the grading process
in educational settings. This study contributes to the academic discourse on Generative
AI in education andpaves theway formore innovative, efficient, and nuanced educational
technologies.

References

1. Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022)

2. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI blog 1.8,
9 (2019)

3. Kasneci, E., et al.: ChatGPT for good? On opportunities and challenges of large language
models for education. Learn. Individ. Diff. 103, 102274 (2023)

4. Wu, Q., et al.: AutoGen: enabling Next-Gen LLM applications via multi-agent conversation,
pp. 1–43 (2023). http://arxiv.org/abs/2308.08155

5. Lagakis, P., et al.: Automated grading in coding exercises using large language models. In:
IMCL (2023)

6. Edwards, S.H., Perez-Quinones, M.A.: Web-CAT: automatically grading programming
assignments. ACM SIGCSE Bull. 40(3), 328–328 (2008)

7. Joy, M., Griffiths, N., Boyatt, R.: The BOSS online submission and assessment system. J.
Educ. Resour. Comput. 5(3), 2 (2005). https://doi.org/10.1145/1163405.1163407

8. Higgins, C.A., Gray, G., Symeonidis, P., Tsintsifas, A.: Automated assessment and experi-
ences of teaching programming. J. Educ. Resour. Comput. 5(3), 5 (2005). https://doi.org/10.
1145/1163405.1163410

9. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for introductory
programming assignments. ACM SIGPLAN Notices 48(6), 15 (2013). https://doi.org/10.
1145/2499370.2462195

10. Akahane, Y., Kitaya, H., Inoue, U.: Design and evaluation of automated scoring: java
programming assignments. Int. J. Softw. Innov. 3(4), 18–32 (2015)

11. Insa, D., Silva, J.: Semi-automatic assessment of unrestrained java code: a library, a DSL,
and a workbench to assess exams and exercises, pp. 39–44 (2015)
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Abstract. Primary School education in Ireland is in the process of
updating its pedagogical approaches, embracing new teaching methods
and desiring new learning outcomes. In particular, the new curriculum
emphasizes developing skills necessary for modern-day life. Peer-led inter-
active group learning is an effective method of teaching those desired
skills. One such technology embracing these methods of learning is the
“Magical Leaders” programme. However, creating an environment that
allows for optimum delivery of the content is difficult as the teacher needs
to deal with the new method of content delivery as well as any behavioral
or social issues that exist in the classroom. We investigate three factors
that affect the successful delivery of the “Magical Leaders” programme:
group composition; peer leader selection; and preparation time. We find
that classes in which the teacher selects the groups complete the chal-
lenges more than 10 min quicker than those classes in which the peers
select the groups or they are randomly assigned. The mean time to com-
plete each challenge was approximately the same for groups in which
the peer leaders were selected by the teacher and those groups were vol-
unteers. However, the number of volunteer-led groups that finished on
or before schedule was higher. Groups with peer leaders who completed
less than 30 min of preparation time finished on average 9 min quicker
than groups with peer leaders who did more than 30 min of preparation
time. However, while the mean time is much less the number of classes
finishing on time is higher for those with more preparation time, 60%,
than those will 30 min of less preparation time, 52%.

Keywords: Peer Led Learning · Education Technology · Optimisation

1 Introduction

Maximising the learning and development of all school students is an impor-
tant goal for all countries, with education earmarked by the United Nations as
a pillar for a sustainable future [4]. However, creating and fostering learning
environments that allow each student to fulfill their potential is a key challenge.
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Primary education in Ireland is undergoing a dramatic transformation, with
new updated pedagogical approaches being implemented. The National Coun-
cil for Curriculum and Assessment (NCCA) want to move primary education
in Ireland away from traditional rote learning to problem-based learning [9]. In
their draft primary curriculum framework, the NCAA identifies seven key com-
petencies (being creative, a digital learner, mathematical, an active citizen, com-
municating and using language, fostering well-being and learning how to learn)
and stress experiential learning. In particular they want to “support children to
become curious, creative, confident and critical users of digital technology”.

Implementing this new curriculum, while at the same time creating new,
efficient learning environments is a formidable challenge. This transformation
also comes at a time when teachers in Ireland are reporting record levels of
burnout [5].

To achieve these ambitious goals, the education sector must embrace tech-
nology. Zeeko Education2, a Dublin based education technology company, are
creating this technology. Among their products is “Magical Leaders”, a peer
led immersive digital learning programme. This innovative programme allows
students to practice and develop the core competencies desired by the NCAA.
However, no research to date has been conducted on how to best deploy “Magi-
cal Leaders” (or any peer-to-peer course) in schools in Ireland. This paper is the
first study examining this topic. These results will help guide teachers on how
to create an environment to efficiently complete the tasks, thereby giving the
largest amount of time for important self-reflection to the students [7].

We study three components and examine how they impact the time taken
to complete the various challenges within “Magical Leaders”. They are: how the
peer-led groups were composed; how the various peer leaders were selected; and
how much preparation time was done before the challenge.

Section 2 reviews the main background concepts and discusses the NCCA and
peer-to-peer learning in more detail and introduces the “Magical Leaders” pro-
gramme. Section 3 discusses each component of our data capture and describes
our experimental setup in detail. Section 4 presents the main results of the exper-
iments described in 3 and discusses their findings. Finally, Sect. 5 summarises
the research and discusses future work suitable for investigation.

2 Background and Related Work

2.1 Irish Primary School Curriculum

The NCAA wants to drastically reform the Irish primary school curriculum and
the current pedagogical approaches in schools. The unprecedented rate of change
in modern society brought about by technological innovation has resulted in mass
disruption to a variety of industries and disciplines. The Primary Curriculum
Framework, launched in 2023, aims to transform education in Ireland around
key competencies that ensure children practice and learn transferable skills, such

2 https://zeeko.ie/

https://zeeko.ie/
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as creatively and problem-solving, to deal with an unknowable future. They
wish to place students at the core of this new learning process. This must be
done efficiently to maximise students’ potential while ensuring teacher burnout
is mitigated. This second goal is of particular importance as primary school
teachers in Ireland have reported record levels of stress and feel overworked [3].

A teacher is well placed to design individualised learning environments for
their students, but a teacher’s knowledge of their students’ learning needs, speed
and capacity cannot be easily scaled. Augmenting teachers with technology to
deliver their lessons is scalable, however. A key component of this new technology
is that it must efficiently deliver these lessons to all the students. This will
allow teachers to focus better on educating and not on administration, behavior
correction and would ensure students’ potential has the best chance of being
achieved. However, to date there has been no work examining how to make the
deployment of any technology more efficient in primary education schools.

2.2 Peer Based Learning

Peer based learning is a collaborative form of education in which one or more
peers (e.g. students) lead the learning of the group (or class). Peer-to-peer learn-
ing has been shown to improve learning outcomes and provides an opportunity
for students to practise skills essential for later stages of life, such as team work
and communication [6]. There is much overlap between these skills and those the
NCAA aim to instill in students in their updated curriculum. Therefore, peer
based learning offers itself as an attractive method of content delivery. A flex-
ible paradigm with many ways to be implemented, peer interaction has shown
positive effects in enhancing learning in both children and adolescents [8]. It has
been shown that peer led learning can be improved upon by adding additional
incentives and changing to the needs of the particular group [2].

Indeed, peer-based approaches have been shown to have a large, positive
impact on learning, with a potential effect equivalent to approximately 5 addi-
tional months’ progress for both peer educators and peer-educated pupils accord-
ing to the Education Endowment Foundation [1].

Some challenges must be overcome to successfully implement such peer based
learning systems, however. It can be difficult for peer leaders to maintain disci-
pline within the group and ensure the correct lesson plan is followed. There may
also be complicated social dynamics within the class that need to be navigated
to ensure tension or other problems in any group are mitigated. Supervision and
optimum arrangement of the classroom for the lesson therefore becomes a key
concern in many peer learning settings.

2.3 Magical Leaders Programme

The “Magical Leaders” Programme is a peer led education programme for 10–
13 year old primary education students developed by Zeeko Education, a Dublin
based Eduction Technology company. It focuses on developing transferable,
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Fig. 1. Challenge map which is navi-
gated by the Driver. The Driver will
move the avatar in the virtual world
and enter each phone and uncover the
activity to be performed.

Fig. 2. Screen seen entering a phone.
The screen describes a challenge or con-
cept that must be performed by the
group. Upon successful completion, the
driver will exit the phone.

higher order skills and knowledge. Zeeko have shown this knowledge acquisi-
tion, complemented by skills practice, progresses young people’s skills and fosters
positive attributes.

The program aims to complement the new curriculum envisioned by the
NCAA, teaching skills such as communication, collaboration, critical thinking,
and creativity through the lens of entrepreneurship.

This study examines the introductory programme of “Magical Leaders”, con-
sisting of 6 lessons - or ‘Challenges’. Each challenge focuses on a particular con-
cept and contains unique learning outcomes, key messages, presentations and
discussion activities. Specifically, pupils are presented with details based on real-
life situations and are tasked with making decisions based on the evidence given.
The challenges are designed to raise questions and to present just enough data to
stimulate/engage pupils to find their own answers. Each challenge is navigated
virtually through online software and also led locally by peer leaders reading
from instructional material. An example of the online software is seen in Figs. 1
and 2. Each challenge ends with a period of self-reflection for the pupils.

The “Magical Leaders” programme has received very positive feedback and
has been created to ensure all the knowledge outcomes are met, however, there
has been no research done on the optimum environment and classroom setup to
achieve these goals.

2.4 Peer Leader Roles Within Magical Leaders

The “Magical Leaders” Programme requires multiple students to perform various
roles during each challenge. These roles include:

Presenters are peer educators who facilitate the lesson’s key messages to
the Pupils via the online software. They are required to stand at the front of
the class and deliver the content of the lessons provided to them, aided by the
online software that is shown to the pupils on the screen.
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Drivers are peer educators who control the online software. They are
required to sit at the computer, select the correct lesson, navigate the online
software, find the various phones contained in the challenge and navigate and
show the slides that the presenters are explaining.

Group Leaders are peer educators who sit at the table with the pupils
in their groups and facilitate and lead the discussion about the lesson. They
facilitate group discussions when asked to do so by the presenters and ensure
discussions remain constructive and on schedule.

3 Experimental Setup

Each “Magical Leaders” challenge is designed to take up 45 min of activity.
Before beginning the lesson, the class must be divided into groups of 6 or 7 and
the peer leaders chosen. Each peer leader must undertake preparation to ensure
they are fully able to fulfil their role. The composition of the groups, the selection
of the peer leaders and the amount of preparation done is at the discretion of the
teacher. While the “Magical Leaders” instructional manual gives suggestions to
teachers of what is best, there has been no research to date investigating how a
teacher can most optimally create an environment to efficiently complete each
lesson.

This paper analyses the performance of classes undertaking “Magical Lead-
ers” challenges and investigates the effect of three criteria on their outcome. The
criteria examined are: Group composition; Peer Leader Selection; and Prepara-
tion Time.

Group composition investigates how the groups were chosen. There are three
possible approaches to create groups for the challenge: the teacher can select the
groups, the peers form the groups themselves or the groups are created randomly.
Zeeko does not recommend that the groups be created randomly as students with
animosity or some other form of incompatibility may be inadvertently placed into
the same group, unsettling the social dynamic and creating a tense atmosphere
in which other members may be unwilling to participate fully.

Peer Leader Selection examines how the student presenters, leaders and
drivers were selected. Pupils will have different levels of self-confidence, which
will be affected differently by the environment and size of the group. Some will
naturally want to be a presenter, others may prefer to be a group leader or com-
puter driver. There are three methods to chose the peer leaders: The teacher
will select them; the students will volunteer themselves for the various roles; or
some other method which could be random or a mixture of the previous two
approaches. While the teacher may be best suited to choose which students are
best suited to the roles and are primed to develop their presentation, assertive-
ness, and interpersonal skills it may be that a child’s self confidence, illustrated
by them volunteering for the roles, is a key factor. Pupils will have different levels
of self-confidence and this may be an important factor in fostering efficient peer
learning.

Lastly, Preparation Time considers the preparation time undertaken by the
peer leaders before commencing the lesson. Zeeko recommends at least 30 min of
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preparation time before each challenge for each peer leader to familiarise them-
selves with the content, their role in the challenge and to answer any questions
they may have. This is a binary category: less than 30 min of preparation or
30 min or more of preparation time.

Each of the challenge follows a similar format. The lesson is broken down into
sub-parts/ points. Each sub-part/ point corresponds to a phone location in the
online programme. Our data capture found the time to compete each phone and
aggregated them to find the total time to complete the challenge. This allowed
for classes which did not complete the challenge in one block (interrupted by
lunch, etc.) to still be included in the final dataset.

4 Results

42 different classes, taking part in 116 challenges were recorded with each class
taking part in between 1 and 5 challenges. After data cleaning and removing
challenges which had errors or were not fully completed, the final dataset con-
tained 26 classes taking part in 67 challenges.

The summary of the results collected is shown in Table 1. Challenges 1 and 2
are the largest in the dataset, with 15 and 17 classes undertaking them. 5 and 3
have roughly half as many, 7 and 8 respectively. 10 classes completed challenges
4 and 6.

Table 1. Summary of data used in results after cleaning.

Challenge Num Number Mean Median SD

1 15 57.49 55.5 19.17

2 17 56.67 55.08 17.39

3 8 50.29 48.89 8.79

4 10 58.89 55.53 14.19

5 7 49.74 46.88 15.59

6 10 46.14 47.72 9.81

Challenges 1, 2 and 4 take an average of over 55 min to complete. This is
perhaps not too surprising as the first time classes attempt challenges they make
take longer. Challenges 3 and 5 take around 50 min to complete while challenge
6 was the quickest, taking just over 46 min. Challenges 1, 2, 4 and 5 show a large
distribution of times taken, while challenges 3 and 6 show that most classes took
a similar amount of time.

Each challenge is designed to take approximately the same time complete.
As our results reflect this design, we combine all challenges for our next stage
of analysis. We next investigate the various factors affecting the length of time
taken to complete each challenge, as described in Sect. 3.
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Some teachers reported that group composition was a mixture of one of
the options (i.e. some groups were selected by the teachers, others randomly).
These challenges were excluded from analysis, leading to less that 67 challenges
included in the analysis.

The overwhelming majority, 43, of groups were composed by the teacher. 4
were composed by the group leader and 8 were randomly put together. Teacher
selected groups were much quicker finishing the challenges than both other group
selection types. Teacher selected finished in an average of 51.59 min, while Group
Leader selected and Randomly selected took 63.41 and 63.93 min to complete
challenges, respectively. Wilcoxan signed rank tests were performed to assess the
significance of the difference between Teacher selected and the other methods.
The results of these tests, as well as other results, are shown in Table 2

Table 2. Experimental Results. Results which are bolded indicate significance accord-
ing to our Wilcoxon tests.

Type Selection Number Mean Time Median Time p-value

Group Composition Teacher Selected 43 51.59 49.73 –

Group Leader 4 63.41 59.98 0.2908

Random 8 63.93 59.53 0.0882

Presenter, Leader Teacher Selected 23 58.03 55.50 –

and Driver Volunteered 29 54.31 53.63 0.4355

Selection Other 3 48.57 45.75 0.0786

Preparation Time < 30mins 23 48.98 50.05

> 30mins 30 57.73 55.38 0.0220

The number of challenges that finished on time and those that did not, split
by each factor, is shown in Table 3. The results further reinforce the conclu-
sion that challenges are completed more efficiently when the teacher selects the
groups. 53% of teacher-selected groups finish the challenge on time, while other
methods only finish on schedule 17% of the time.

Volunteered leaders and drivers are seen to finish challenges on time 44% of
the time, while teacher selected only finish on schedule 30% of the time.

Finally, when the preparation time exceeds 30 min 60% of the time the chal-
lenge finished on schedule, compared to only 52% when the preparation time is
less than 30 min. This is despite the average time taken for groups with more than
30 min preparation time being far larger (and statistically significantly longer)
than those with 30 min or less preparation time.
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Table 3. Experimental Results on Time Keeping.

Type Selection Times Over Schedule Times On Schedule

Group Composition Teacher Selected 20 23

Group Leaders 3 1

Random 7 1

Presenter, Leader Teacher Selected 16 7

and Driver Volunteered 16 13

Selection Other 1 2

Preparation Time < 30mins 11 12

> 30mins 12 18

5 Conclusion and Future Work

We analysed the performance of various primary school classes in Ireland com-
pleting the “Magical Leaders” programme, a peer led interactive learning course.
Specifically, we considered three factors (group composition, peer leader selection
and preparation time) and investigated their influence on the successful and effi-
cient completion of challenges within the programme. Keeping to the prescribed
schedule and completing the challenges in an efficient way results in each child
maximising their personal reflection time.

We found that teachers overwhelmingly chose the members of groups and
those groups were seen to more efficiently complete the program, taking on
average 10 min less to complete each challenge than peer-selected or randomly
assigned groups.

There was no difference in mean time to complete a challenge found between
peer leaders that were selected by the teacher and those who volunteered for the
position. However, when analysing the number of challenges that remained on
schedule, we see that teacher-selected leaders remained on schedule 30% of the
time while leaders that volunteered stayed on schedule 45% of the time.

Leaders who undertook less than 30 min of preparation time were seen to
complete challenges faster than leaders who undertook more than 30 min of
preparation. The reasons for this are an open question and an avenue for future
work. Interestingly, despite having a lower mean and median time to complete
each challenge, the number of challenges completed on time when having less
than 30 min of preparation was 52%. The number of challenges completed on
time when leaders had more than 30 min preparation time was 60%. The amount
of preparation time needed is an open question and may be influenced by other
factors not examined in this study.

The next step of this work is to investigate the effectiveness of the peer
learning environments, which can only be measured using student post-challenge
surveys and feedback. These surveys will measure how much a student’s skills
have improved after completion of each challenge and will allow more context to
be placed on the information captured.
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Abstract. We leverage generative large language models for language
learning applications, focusing on estimating the difficulty of foreign lan-
guage texts and simplifying them to lower difficulty levels. We frame both
tasks as prediction problems and develop a difficulty classification model
using labeled examples, transfer learning, and large language models,
demonstrating superior accuracy compared to previous approaches. For
simplification, we evaluate the trade-off between simplification quality
and meaning preservation, comparing zero-shot and fine-tuned perfor-
mances of large language models. We show that meaningful text simpli-
fications can be obtained with limited fine-tuning. Our experiments are
conducted on French texts, but our methods are language-agnostic and
directly applicable to other foreign languages.
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1 Introduction

Today, there exist many online foreign-language learning tools, including
Duolingo, Frantastique, and ReadLang which incorporate gamification elements
to increase appeal and retention [25]. However, they do not offer personaliza-
tion based on learners’ interests nor do they provide relevant, contemporary
content. Oftentimes, the educational content fails to be matched to the learners
knowledge level. Content that is too easy bores learners; too difficult discourages
them.

In this work, we use large language models (LLMs) to estimate and poten-
tially reduce the difficulty of foreign content. Such an approach, can be used to
identify appropriate contemporary content in the target learning language, thus
increasing learners’ motivation. Moreover, such an approach could be used in
conjunction with a recommendation system to discover content appropriate for
the learner’s knowledge level. The contributions of this work include:
– A machine learning solution to estimate foreign text difficulty, more accurate

than traditional readability metrics.
– Use of fine-tuned LLMs to simplify the difficulty/level of a foreign French text

while preserving its meaning as well as possible. We propose a technique for
automatically assessing simplification quality and report performance bench-
marks.
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2 Difficulty Estimation

2.1 Related Work

From a pedagogical perspective, our solution builds upon already established
theory of extensive reading [7,15], which constitutes a crucial means of rein-
forcing one’s language skills. However, it is important to find content that is
appropriate for the learner’s knowledge level of the foreign language. One app-
roach to estimating the difficulty of a foreign language text is to use “readability”
formulas1. They are regression approaches that calculate the complexity of a text
based on various text features, including sentence length and word frequency.
Some commonly used readability formulas for foreign language texts include
the Flesch-Kincaid Grade Level, the Simple Measure of Gobbledygook
(SMOG), and the Gunning Fog Index.

Another approach to tackle difficulty estimation is to use machine learn-
ing techniques to predict the difficulty level based on various linguistic features
[5,10]. A particularly notable advancement in this field in recent years is the
integration of pre-trained word- and sentence- embeddings into text readability
architectures [11,12,16,27]. However, our review indicates that prior research
has not yet investigated the predictive accuracy of difficulty estimation using
LLMs.

2.2 Our Approach

We model the estimation of difficulty as a classification problem. Let D be
the set of documents, Y the random variable representing the linguistic dif-
ficulty class. For the linguistic difficulty, we wish predict the Common Euro-
pean Framework of Reference for Languages, or CEFR difficulty level of a text
{A1, A2, B1, B2, C1, C2}), where A1,A2 signify easy text, B1,B2 intermediate
level and C1,C2 advanced level. f : D → Y is a classifier mapping a docu-
ment d ∈ D to a difficulty class y ∈ Y . The classifier f is built using text-label
pairs, where the label corresponds to the linguistic difficulty. We use LLMs like
BERT [8], GPT [20], GPT-3 [2], LLaMa [24], and Palm [6], which convert
text tokens into embeddings capturing the meaning of each token. The mod-
els vary in data volume, training methodology, size, and language capabilities,
resulting in embeddings of different lengths (e.g., 768 for BERT, 1,536 for Ope-
nAI’s “ada-002”).
GPT-3+ Models: Advanced models like GPT-3 and GPT-4 [20] have been
trained on massive multilingual datasets and post-trained using reinforcement
learning from human feedback. They achieve state-of-the-art performance across
tasks like summarization, translation, and question-answering [3]. These models
excel at generating human-like text and can be fine-tuned for classification tasks.
We use GPT models for their good performance-versus-cost ratio.
1 Note, that these readability formulas are primarily targeted to estimate the difficulty

of a text for native speakers rather than for second language learners [28]. These
methods were initially developed for the English language, and progressively have
been extended for other languages such as French, Chinese and Italian [5,19].

https://www.coe.int/en/web/common-european-framework-reference-languages/level-descriptions
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3 Text Simplification

In the context of a foreign language learning app, we now explore the scenario
assuming we have discovered content that matches the user’s interests (such as,
sports or politics), but it is more advanced than their current language profi-
ciency level.

Evaluating text simplification systems is a non-trivial task that requires met-
rics robust enough to account for both readability and semantic preservation.
Traditional n-gram based metrics such as BLEU or ROUGE, though popular
in translation tasks, have limitations when applied to text simplification due to
the fundamental requirement of simplification to alter the text structure while
maintaining the same meaning [1] [22]. The SARI metric, designed specifically
for simplification tasks, measures the goodness of words added, deleted, and
kept by the system. Current research, such as [22], is exploring new methods
like QUESTEVAL, which uses semantic questioning of texts to assess simpli-
fications. This approach aims to overcome the limitations of earlier metrics and
may result in improved alignment with human evaluations.

While text summarization and text simplification may appear similar as both
involve altering the original text, their objectives are distinct. Summarization
aims to condense a text by trimming down its length and retaining only the
main points. Simplification seeks to lower the linguistic complexity, making con-
tent more accessible [22]. Simplification may or may not alter the length of text.
Unlike summarization, simplification is deals with adjusting the text to a par-
ticular knowledge or comprehension level.

The hybrid task of combining both text summarization and simplification
has been investigated in the context of generating summaries for lay audiences.
This task known as “lay summarization” aims to render complex scientific con-
tent accessible to a general audience, requiring the extraction of key points and
simultaneously a reduction in linguistic complexity [4,26]. Transformer models
based on BERT [8] and PEGASUS [29] have been used in this context.

Recent advancements in LLMs, have greatly contributed to the field of text
simplification [21]. However, the efficacy of these models varies, and not all are
equally suited for the task, calling for evaluation and fine-tuning on specialized
datasets [23]. A recent analysis by [9] highlights that when evaluated on pub-
lic datasets, contemporary LLMs like GPT-3 can match or even outperform
systems explicitly designed for text simplification.

3.1 Our Approach

We model simplification in a similar way as for content difficulty estimation.
However, instead of predicting the level of difficulty, we predict the simplified
sentence token by token. We provide labelled examples of original and simpli-
fied sentences and train a machine learning model. Because we only fine-tune
LLMs, we need to provide very few pairs of examples, since the LLMs have
already encapsulated in them large amounts of textual knowledge. In our exper-
iments, we only post-train the LLMs using 125 pair sentences, and show large
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improvements compared to the zero-shot LLM counterpart. Because our goal is
to assist learners in improving their language skills by reading content close to
their knowledge/experience level, simplification of a given text is approached as
a sentence-by-sentence simplification, and not as a complete synthesis of new
text.

A key challenge in text simplification involves evaluating and balancing the
trade-off between preserving the meaning and semantics of the original text
and achieving effective simplification. The more we simplify, the more we may
lose the original meaning, depending on the complexity of the original text.
To evaluate these conflicting aspects, we introduce two metrics: simplification
accuracy, and semantic similarity. Therefore, given a set of original sentences O,
their simplified versions T by a model m that we seek to evaluate O m−→ T , and
ε(·) is the embedding representation of a text, we define: A. Simplification
Accuracy A ∈ {0, 1} is a binary output indicating if a text t ∈ T is exactly
one CEFR level of difficulty lower than their associated original text o ∈ O. As
an example, if a text of level C2 is simplified to C1 with a given model then A = 1,
but if the resulting simplification leads to B2 level text, then A = 0. For a set
of texts, we average A. B. Semantic Similarity S ∈ [0 . . . 1] is a real number
between zero and one, and captures the preservation of semantic meaning of
simplified text with respect to original text, which can be measured as the cosine
similarity between the embedding representation ε(·) of the original text and the
embedding representation of the simplified text. The choice of model used to
calculate embbedings is described below. For a set of texts, we average S. Note,
that this measure of similarity allows texts to have completely different words,
but still have high similarity if their vectors are close in the (semantic) embedding
space. We integrate both aspects, simplification and semantic similarity, into a
single weighted-score by drawing inspiration from the F1-score:

w-Score = 2 × w1 × A × w2 × S

w1 × A + w2 × S

where w2 = (1 − w1). The coefficients w1 and w2 are chosen in such a way
to balance the importance of the two aspects (equal in our experiments). This
metric allows us to compare the performance of each of the models evaluated.
Note that the A and S components would benefit from being kept separate to
easily distinguish the strengths and weaknesses of each model.

There is one fine aspect still to be discussed. While S can be easily computed,
evaluating the simplification accuracy A is more challenging. Even though we
have the difficulty of the original text, when a text is simplified by a model m,
then we do not have at our disposal the difficulty level of the simplified text (A1-
C2). In our experiments, we address this by using the fine-tuned CamemBERT
model as the proxy evaluator of the simplification accuracy. We compute the
difficulty of the original text and the simplified text, and if the difficulty is
reduced by one level, we consider the transformation as valid. For example, if
the original label was C2, and CamemBERT classified it as C1, but then it
classified the simplified text as B2, then we assign A = 1 since the difficulty



Difficulty Estimation and Simplification of French Text Using LLMs 399

reduction was one level. Notice, that this approach should cater for constant
biases or potential errors that the model might introduce.

4 Experiments

The goal of the following experiments is to demonstrate that (a) fine-tuned
LLMs can significantly improve the difficulty estimation offered by traditional
readability metrics. (b) simplification methodology driven by fine-tuned LLM
models outperforms zero-shot approaches. The code for the experiments can be
retrieved here.

4.1 Difficulty Estimation

We evaluated the difficulty estimation on three labeled datasets: 1) Littéra-
ture de jeunesse libre (LjL) which we obtained from [11]. Each content item
here contains several sentences and a label (labels: level1, level2, level3, level4).
2) A collection of sentences collected from the Internet (sentencesInternet).
Each of these sentences was then annotated by at least three annotators
(students recruited in our university) in difficulty levels. Only sentences in
which all participants agreed on the difficulty annotation were retained (labels:
A1,A2,B1,B2,C1,C2). Here, the labels correspond to the levels designed by the
Common European Framework of Reference for Languages (CEFR). 3) A col-
lection of sentences from literature books (sentencesBooks). Each book was
annotated with a difficulty level by a Professor of French. All sentences in that
book were then given that label. This process involved an OCR pipeline which
could lead to faulty detection of characters, so only the sentences without any
errors were retained. (labels: A1,A2,B1,B2,C1,C2). The characteristics of these
datasets are provided in Table 1. To train and evaluate our model, we used an
80/20 train-test split, and the results that we present are for examples which
the model saw for the first time.

Table 1. Characteristics of datasets for difficulty estimation experiments

Dataset Sentences Words Chars Labels

LjL [11] 2,060 334,026 1,532,442 level1–4
sentencesInternet 4,800 85,941 421,045 A1–C2
sentencesBooks 2,400 56,557 281,463 A1–C2

Evaluation. As a simple benchmarking, we compare the accuracy of our diffi-
culty estimation approach to traditional readability-based metrics, such as the
GFI (Gunning Fog Index), FKGL (Flesch Kincaid grade level), ARI (Auto-
mated Readability Index) in Table 2. Initially, all of these metrics have been
developed for English content, but language specific models, such as for French
text, as used in our application, have also been developed [10].

https://github.com/hjamet/Lingorank-ITS
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These techniques are inherently regression techniques and output a floating
point value of the text difficulty. As a result, we cannot make a direct com-
parison, because our difficulty estimator predicts discrete labels. To address
this challenge, we trained a logistic regression model R → L with L being
the space of our labels equal to {level1, level2, level3, level4} for the LjL dataset
and {A1, A2, B1, B2, C1, C2} for the sentencesBooks and sentencesInternet
datasets. In this way, we transformed our regression into a classification, which
we can evaluate with the usual metrics and compare with the other classifica-
tion methods. For LLM-based difficulty estimation, we train the following clas-
sifiers using the examples from the training set and test how they behave on the
unseen test set: 1. GPT-based models: We use the GPT-3.50-turbo-1106 and
Davinci-002. Both these models have been fine-tuned for the task at hand using
the examples with the labelled difficulties of the text. 2. CamemBERT: This is
essentially the well-known BERT model trained on French data [18]. Camem-
BERT is based on the RoBERTa architecture [17]. While BERT was initially
trained on a diverse range of texts in multiple languages, CamemBERT is
specifically fine-tuned for the French language. This fine-tuning process involves
training the model on a massive amount of French text data, which enables it
to capture the nuances, idioms, and syntactic structures unique to the French
language. Because CamemBERT is tailored to French, it excels in various
language-related tasks such as text classification, sentiment analysis, and named
entity recognition within the context of French text. 3. Mistral-7B: This is an
open-source LLM [13] with a modest size that we fine-tuned in the same manner
as GPT-based models.

To take advantage of the inherent knowledge in LLMs, we tested different
contexts and selected the one which offered the best performance. We then eval-
uated which models could potentially benefit with and without this context.2
Table 2 shows the F1-score across the three datasets. The column context indi-
cates whether the model has been trained with or without a task-related context.
The various models were sorted by average ranking of their F1-score on each
dataset. Our results suggest that the GPT-3.5 is the best performing model.
The second place is shared by the Mistral-7B and the CamemBERT, but
we draw the attention of the reader to the much smaller size of these models: 7
Billion parameters for Mistral-7B, 110 Million for CamemBERT, compared
to 175 B parameters of GPT-3.5.

4.2 Text Simplification

For the training and the evaluation of the LLM models, we have constructed
two different datasets: 1) Training-set. To fine-tune our models for the task of

2 The context used consists of a French text whose translation is given by: You are
a language assessor using the Common European Framework of Reference for Lan-
guages (CEFR). Your task is to assign a language proficiency score to this text, using
the CEFR levels from A1 (beginner) to C2 (advanced/native). Evaluate this text and
assign it the corresponding CEFR score.
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Table 2. Difficulty estimation metrics for all datasets

LjL SentencesInternet SentencesBooks
model context

GPT-3.5-turbo-1106
� 0.72 0.90 0.50
- 0.73 0.87 0.49

CamemBERT - 0.62 0.82 0.52
Mistral-7B � 0.64 0.75 0.51

Davinci-002
- 0.59 0.82 0.47
� 0.61 0.81 0.47

Mistral-7B - 0.47 0.63 0.35
FKGL - 0.42 0.34 0.35
GFI - 0.45 0.32 0.34
ARI - 0.40 0.34 0.34

simplification, we need a dataset of French sentences with their simplifications
at an associated lower CEFR level. We used GPT4 to generate 125 sentences
(25 from each level A2, B1, B2, C1, C2 ) and their simplified versions. This
dataset was further reviewed by a native French speaker. 2) Test-set. We take,
per difficulty level A2, B1, B2, C1, C2 (Level A1 cannot be simplified), 100
random sentences from the sentencesBooks and sentencesInternet dataset.
The test-set consists of 5 × 100 × 2 = 1000 sentences.

Model Evaluation. We examine the performance of GPT-4, Davinci and
GPT-3.5-turbo-1106 from OpenAI, and the Mistral-7B model. We provide
the results of our evaluation in Table 3. Among the different models evaluated,
GPT-4 Zero-shot has the highest w-Score. The 0.5 in the simplification accuracy
of GPT-4 shows that in 50% of the cases, the text was simplified to one-level

Table 3. Performance of LLMs for the text simplification task.

Simplification Semantic w-Score
Model Accuracy Similarity

GPT-4 Zero-shot 0.50 0.89 0.64
Mistral-7B Fine-Tuned 0.35 0.91 0.51
GPT 3.5 Fine-Tuned 0.34 0.91 0.50
GPT 3.5 Zero-Shot 0.31 0.93 0.47
Mistral-7B Zero-Shot 0.28 0.93 0.43
Davinci Fine-Tuned 0.24 0.83 0.38
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lower of difficulty. At the same time the meaning is highly preserved with the
cosine similarity between the original and simplified embeddings of the text being
0.89 on average.
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Fig. 1. Iterative simplification of sentence difficulty of CEFR level C2 with Mistral-
7B model where CamemBERT was used to estimate difficulty and cosine similarity to
evaluate text similarity. We report average value over 100 experiments.

Iterative Simplification. Finally, we illustrate how a simplification model, the
Mistral in this case, behaves for the task of an iterative simplification of French
sentences. We randomly selected 100 level C2 sentences from the training-set
correctly classified by CamemBERT as being of level C2. We then iteratively
applied the simplification steps to the sentence using the fine-tuned version of
Mistral-7B before evaluating the difficulty of the resulting sentence and the
cosine similarity with the original sentence (from iteration 0). For a performance
model, that always reduces the difficulty one-difficulty level at a time, we could
only do this operation 5 times (C2 −→ A1). Since, we don’t have a perfect
model, we perform this 8 times to observe the trend. We see that the model
successfully reduces both the difficulty and the semantic similarity is also reduced
as a consequence of the simplification, as shown in Fig. 1.

5 Conclusion

This study demonstrates the potential of LLMs to enhance the estimation of
foreign text difficulty and simplification. These advancements open new per-
spectives for personalizing language learning. By integrating these models into
educational platforms, it becomes possible to adapt content to each learner’s
interests and level, making the experience more engaging and effective. Moreover,
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these models could help bridge gaps in existing pedagogical resources by gener-
ating simplified content on-demand. Future work should explore the possibility
of working with entire paragraphs rather than isolated sentences for difficulty
estimation and simplification. It would also be interesting to include state-of-
the-art models like GPT-4, Claude 3 Opus, Gemini 1.0 Ultra, and larger
open-source models such as Mistral 8x22b in the comparisons [14].
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Abstract. Large language models (LLMs) like GPT-4 reshape intelligent tutor-
ing systems by enabling nuanced natural language interactions. LeveragingLLMs’
capabilities, this study introduces an innovative LessonComprehension Evaluator,
utilizing advanced Natural Language Processing (NLP) methods and Augmented
Retrieval Generation (RAG) to assess course material comprehension. Through a
web interface, students engage with tailored questions and receive feedback, fos-
tering immersive learning experiences. Each response undergoes rigorous evalua-
tion against a ground truth LLM-generated knowledge base, encompassing seman-
tic comprehension, specificity, and correctness metrics. These evaluations provide
insights into students’ course understanding, informing future pedagogical strate-
gies. By incorporating auditory options for accessibility and gamification elements
for enhanced engagement, this approach facilitates self-paced, deeper learning,
fostering dynamic and enriching learning environments.

Keywords: Intelligent Tutoring Systems · GPT-4 · Retrieval Augmented
Generation (RAG)

1 Introduction

In the realm of Intelligent Tutoring Systems (ITS), several significant advancements
have been made in recent years, as evidenced by a series of papers published from
2019 to 2024. Explainable Artificial Intelligence was introduced in ITS to foster student
engagement and understanding [1]. The integration of ITS with personalized learning
(PL) gained traction [2]. Systematic literature reviews underscored the evolution of ITSs
with natural language, showcasing various mechanisms for simulating human dialogue
and pedagogical strategies [3, 4].

Papers explored the potential of LLMs in generating reading comprehension exer-
cises [5] and developing adaptive practicing systems [6], highlighting their efficiency
in question generation and mastery detection algorithms. However, challenges such as
bias mitigation and evaluating multi-turn conversations remained focal points for future
research [7]. Additionally, studies investigated the mathematical capabilities of LLMs
and emphasized the need to address knowledge gaps and misconceptions in educational
contexts [8, 9].

Innovative solutions, such as AI Tutors and Virtual Teaching Assistants (TA), show-
cased the integration of advanced AI technologies, including Large Language Models

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sifaleras and F. Lin (Eds.): ITS 2024, LNCS 14798, pp. 405–414, 2024.
https://doi.org/10.1007/978-3-031-63028-6_35
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(LLMs), for personalized and adaptive learning experiences [10, 11]. These systems
leveraged state-of-the-art LLMs, such as GPT-4, to provide accurate answers, tailored
tutoring, and comprehensive feedback [11–13]. However, challenges such as scalability,
interpretability, and ethical considerations remained pertinent [10, 11, 14].

In parallel, the research explored the authoring scaling of AutoTutors and the real-
life usability of LLMs in science education [15, 16]. Studies on Retrieval Augmented
Generation (RAG) systems emphasized the importance of careful design considerations
and domain-specific fine-tuning [17, 18].

The transformative breakthroughs in NLP arrived with the ascent of deep learning
methodologies and the development of LLMs, such as OpenAI’s GPT [20] series and
Google’s BERT [21]. These LLMs are characterized by their massive scale, parameter
counts, and ability to generate coherent and contextually relevant text.

The proliferation of LLMs has catalyzed a revolution in NLP, enabling unprece-
dented capabilities in tasks ranging from machine translation and question-answering
to text summarization and dialogue generation. RAG is a pioneering paradigm within
the domain of NLP. It integrates LLMs with external knowledge sources to leverage the
retrieved knowledge to augment text generation capabilities.

This study introduces an innovative Course Comprehension Evaluator using LLMs
(LLMCCE). The web interface allows students to engage with tailored questions and
receive feedback, providing insights into their understanding and facilitating self-paced,
deeper learning.

Subsequent sections concisely expose the technical underpinnings pertinent to the
terminologies utilized. Finally, an exposition of the evaluation outcomes, which at the
same time evaluate GPT-4 effectiveness in creating meaningful and on-target questions
from textual content, derived from domain expert assessments and pilot study findings
is presented, complemented by examining associated limitations and avenues for future
research in this domain.

2 LLM-Based Course Comprehension Evaluator (LLMCCE)

Themain modules that comprise our proposed approach are the User Interface, Timeline
Creation Module, Evaluation Module, and Vector Database. A high-level architecture is
shown in Fig. 1.

Fig. 1. High-level architecture of LLMCCE
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2.1 User Interface Module

In general, several elements are included in the intelligent tutoring system’s user interface
to make learning easier and more comfortable. In our approach, one notable feature is
the flexibility for students to choose the precise lesson file they want to practice. This
feature empowers students to actively engage with the educational information in a way
that is in line with their learning preferences and aims while also encouraging autonomy
and agency among students and a sense of ownership over the learning process.

After the student chooses the desired lesson, in our case History, the main interaction
screen changes and shows the corresponding timeline chosen.

Central to this new screen is the prominent display of the timeline, strategically posi-
tioned to facilitate student engagement and navigation through the educational material.
The timeline is presented in a vertical orientation, commencing at the topmost portion
of the screen and extending downwards, affording students a comprehensive overview
of the chronological progression of events or learning milestones, as shown in Fig. 2.

Fig. 2. The Timeline student interaction screen

2.2 Human Tutor Administration Module

In the administrative interface of the intelligent tutoring system, the human tutor is vested
with significant autonomy and flexibility in shaping the pedagogical trajectory of the
educational experience. A key feature of this interface empowers the human tutor to
define the parameters governing the generation of a specific number of questions by
the model or to directly input custom questions onto specific textual content, thereby
circumventing the conventional Lesson Creation Module.

By bypassing the Lesson Creation Module, described in later sections, in favor of
direct intervention by the human tutor, the system transitions into an evaluative role,
wherein the focus shifts towards assessing learner comprehension and mastery of the
educational content. The lesson is promptly saved to the database upon completion
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of the instructional design process, ensuring seamless integration into the overarching
educational framework.

This approach not only expedites the content creation process but also affords the
human tutor greater freedom and flexibility in tailoring pedagogical pathways to address
learners’ diverse needs and preferences. By emphasizing human expertise and input,
the system fosters a collaborative educational environment wherein the complementary
strengths of automated technology and human ingenuity converge to facilitate enriched
learning experiences.

2.3 Lesson Creation Module

In creating lessons within the intelligent tutoring system, a structured procedure is fol-
lowed to harness the capabilities of both human input and advanced natural language pro-
cessing technologies. Initially, a human tutor accesses an administration panel designed
for lesson creation, wherein they are prompted to insert textual content that forms the
basis for constructing a timeline within the educational material. This textual content
(TC) can range from concise excerpts to comprehensive passages, encompassing various
educational resources such as book paragraphs, chapters, or entire books. Subsequently,
upon submission of the inserted text, it undergoes processing within a Python script
specifically engineered for this task.

Within the confines of the Python script, ameticulously crafted prompt is formulated,
tailored to elicit pertinent information from the provided text and to guide subsequent
question generation. This prompt encompasses instructions for extracting key points
from the text, a predefined template for structuring responses, and the number of ques-
tions the tutor requested [NQ]. Leveraging the robust capabilities of the GPT-4 language
model, this prompt is then deployed to generate responses that align with the specified
template. The structure of this prompt is as follows:

“Create a timeline of [NQ] important events covering all of the given text. The pre-
sentation of the timeline will be presented without break lines and three keywords [refer-
ring_date, event, question] separated by comma as follows: referring_date: [Date],
event: [Event], question: [Question] of understanding about the event. The keywords
must be mentioned every time in the response. Text: [TC]”.

The resultant responses generated by GPT-4 are subject to post-processing proce-
dures, wherein the data is organized and stored in individual PHP files. A salient feature
involves automatically generating PHP files each time a timeline is created, facilitat-
ing the storage and dissemination of educational content. This innovative functionality
underscores a commitment to seamless collaboration and knowledge sharing among
students and tutors within the educational ecosystem. A detailed low-level architecture
of the lesson creation module is presented in Fig. 3.

This structured procedure underscores a symbiotic relationship between human
expertise and artificial intelligence, wherein the computational power and natural lan-
guage processing capabilities of state-of-the-art language models complement human
tutors’ nuanced understanding and instructional insights. By seamlessly integrating
human input with advanced technological solutions, the intelligent tutoring system facil-
itates the creation of dynamic and engaging educational content tailored to learners’
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Fig. 3. Detailed low-level architecture of Lesson Creation Module.

diverse needs and preferences. Moreover, this procedure exemplifies a synergistic app-
roach toward educational content creation, wherein the fusion of human creativity and
machine intelligence culminates in developing pedagogically sound and intellectually
stimulating learning experiences.

2.4 Evaluation Module

In the context of this step, the utilization of a vector database [22] plays a pivotal role
in facilitating the storage and manipulation of textual data within the intelligent tutoring
system. A vector database, in essence, is a specialized repository designed to store
vectors, which are mathematical representations of data points in a multi-dimensional
space. These vectors capture semantic relationships and contextual information inherent
within the textual content, thereby enabling efficient retrieval and analysis of information.

Specifically, in our approach, the vector database serves as a repository for storing
vectors generated from textual inputs provided by human tutors. Upon submission of a
text by the human tutor to create a timeline within the educational material, the system
initiates an auxiliary procedure. This procedure involves tokenizing the text and seg-
menting it into predefined chunk sizes, breaking the textual content into manageable
units for processing.

Subsequently, each chunk of text transforms into a vector embedding utilizing an
embeddingmodel,with the specificmodel employed herein denoted as “text-embedding-
ada-002” [20]. This embedding model facilitates the conversion of textual information
into dense numerical representations, capturing the semantic nuances and contextual
intricacies embedded within the text. Through this process, the textual content provided
by the human tutor is encoded into vector embeddings, effectively encapsulating the
semantic essence of the input within a mathematical framework.

This database is meticulously calibrated to operate using cosine similarity as its pri-
mary similarity metric, a mathematical measure widely acknowledged for its efficacy in
capturing the degree of similarity between vectors in amulti-dimensional space. Further-
more, the dimensionality of vectors stored within the database is meticulously defined
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to adhere to the text embedding model’s specifications. Specifically, the dimension size
is set at 1536, aligning precisely with the dimensional requirements of the employed
embedding model.

Completing this encoding process, the vectorized representations of the human
tutor’s text are inserted into the vector database for storage and subsequent retrieval
within the system’s operational workflow.

Within the architectural framework of our approach, incorporating a dynamic
timeline feature serves as a cornerstone in facilitating interactive learning experiences.

Integral to this timeline are questions generated by the Lessons Creation Module,
strategically positioned to prompt learner engagement and comprehension. Each ques-
tion is complemented by a textarea input field, allowing students to articulate their
responses effectively. To enhance accessibility and accommodate diverse learner needs,
the system incorporates text-to-speech functionality, enabling auditory presentation of
questions and automatic speech recognition (ASR) for seamless input through spoken
responses.

Upon submission of a student’s response (UR), the system initiates a comprehen-
sive evaluation process orchestrated by a designated Python file. This evaluative pro-
cedure commences with a retrieval operation targeting the vector database to source
relevant information pertinent to the question. Employing sophisticated retrieval algo-
rithms, the system identifies the top threemost relevant records from the vector database,
contextualizing the subsequent evaluation process.

With relevant data, the system proceeds to solicit responses from the GPT-4 model,
leveraging its advanced natural language processing capabilities. These responses, gen-
erated in response to the same question (UQ) presented to the student, serve as the
benchmark ground truth (GT) against which student responses are evaluated. RAG’s
response is considered as the authoritative reference point for subsequent evaluations.

Subsequently, the system engages GPT-4 again, this time tasking it with the role of
evaluator. A specialized prompt is crafted to guide the model in assessing the student’s
response vis-à-vis the generated ground truth, focusing on evaluating detail, semantic
comprehension, and correctness. Each aspect is meticulously scrutinized, and a score
ranging from 0 to 20 is assigned to quantify the quality and accuracy of the student’s
response relative to the established ground truth. The prompt follows:

“Act as a kind assistant, History Teacher Assistant. I want you to evaluate answers
[UR] and [GT] against each other for question [UQ]. Taking [GT] as the correct ref-
erence, answer for [UR] the following: Detail:[Grade from 1 to 20], Semantic:[Grade
from 1 to 20], Correctness: [Grade from 1 to 20]. Then average the three ratings and
display Final Score:[Average from 1 to 20]”.

The evaluation results are returned to the user interface. Additionally, a brief explana-
tion of how GPT-4 evaluated the student’s response is returned for better interpretability
of the procedure.

2.5 LLMCCE Evaluation

In evaluating the correctness and effectiveness of the intelligent tutoring system’s
question generation and response capabilities, a rigorous assessment methodology is
employed, leveraging the expertise of domain-specific professionals. This evaluative
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process involves soliciting feedback from three domain experts who possess specialized
knowledge and proficiency in the subject matter under consideration. The experts eval-
uate questions and corresponding model-generated answers, assessing their relevance,
accuracy, and alignment with the provided context.

The domain experts are provided with a standardized questionnaire comprising 15
question-answer pairs, each representing a distinct instance of model-generated content
to structure the evaluation process. The experts are instructed to employ a classification
method wherein they assign a score based on the question’s relevance to the provided
context and the adequacy of themodel-generated answer in addressing the corresponding
question. Specifically, a score of 2 is assigned if both the question and answer are deemed
relevant and satisfactory, and a score of 1 is assigned if the question is relevant but the
answer falls short of expectations. A score of 0 is reserved for instances where the
question is deemed irrelevant to the context. This evaluation approach also evaluates
how well an LLM such as GPT-4 can extract specific questions from a text and identify
its main points.

Upon completion of the evaluation process, the results from each domain expert are
compiled and analyzed to gauge the accuracy and effectiveness of the model’s question
generation and response capabilities. Notably, the evaluation results indicate a high
degree of alignment between the model-generated content and the provided context,
with the vast majority of question-answer pairs receiving scores of 2 or 1. Specifically,
the first domain expert submits 13 pairs with a score of 2 and 2 pairs with a score of 1,
while the second domain expert assesses 12 pairs with a score of 2 and 3 pairs with a
score of 1. Remarkably, the third domain expert’s evaluations mirror those of the first
expert, further validating the consistency and reliability of the assessment process.

Crucially, none of the domain experts identify instances where the model-generated
content deviates significantly from the provided context, as evidenced by the absence of
scores of 0. This observation underscores the robustness and accuracy of the model in
generating contextually relevant questions and responses (Table 1).

Table 1. The model generated Q&A pairs evaluation from domain experts.

Domain Experts Domain Expert Evaluation

0 1 2

1st DE 0 2 13

2nd DE 0 3 12

3rd DE 0 2 13

In aggregate, the evaluation results yield an overall accuracy rate of 84.4%, indi-
cating a high level of proficiency and effectiveness in the system’s question generation
and response capabilities. This percentage is a key metric in assessing the system’s
performance and guiding decisions regarding its implementation and utilization within
educational settings. Ultimately, the favorable evaluation outcomes affirm the system’s
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efficacy in facilitating effective question generation and response, thereby contributing
to enhanced user learning experiences and outcomes.

2.6 LLMCCE Pilot Study

To gauge the intelligent tutoring system’s practical efficacy and user experience, access
was extended to a select group comprising 8th-grade students and their dedicated history
lesson human tutor. This endeavor aimed to solicit firsthand feedback from end users
regarding their engagement with the system and overall satisfactionwith its functionality
and utility within the educational context.

During the evaluation period, students and their tutor interacted with the system,
engaging in various activities designed to assess its effectiveness in facilitating learning
and comprehension of historical concepts. Notably, participant feedback indicated a high
level of engagement and enthusiasm with the system, with students expressing a keen
interest in revisiting the procedures multiple times in pursuit of improved outcomes.

3 Limitations

The evaluation procedure for an intelligent tutoring system’s question generation and
response capabilities has limitations due to subjective evaluations from domain experts.
Future research should include a larger pool of experts to improve the robustness and
generalize ability of evaluation outcomes.

Moreover, the evaluation process in educational domains is influenced by contextual
nuances, with the effectiveness of model question-answer pairs varying based on the
context and instructional material complexity. Understanding these factors is crucial for
making informed decisions about the model’s applicability.

The model’s relevance issue highlights the need for ongoing research and refinement
of RAG approaches. Strategies like optimizing prompts or exploring alternative method-
ologies can enhance contextual relevance and accuracy, addressing evolving needs and
expectations.

4 Conclusion

Our proposed methodology integrates natural language processing and interactive learn-
ing methodologies to enhance educational experiences, engaging learners, fostering
active participation, and facilitating knowledge acquisition and retention. Simultane-
ously, an assessment is conducted by specialists in the field of LLM Model efficiency,
namely the GPT-4 in our instance, concerning the task of identifying the salient features
of the provided text and crafting focused questions around them.

Our system effectively delivers relevant and engaging educational content, with
an intuitive interface and interactive features. However, further research is needed to
address limitations, improve performance, and enhance user satisfaction. This will help
the system evolve to meet diverse user needs and expectations.
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Abstract. This paper presents a comprehensive study of learning
assessment, delving into the concept of item difficulty and learner percep-
tion. It addresses two critical dimensions: the methodologies employed,
particularly data-driven approaches, and the necessary data for this anal-
ysis. Traditional difficulty estimation methods focus on question content
or student performance. Recent studies suggest using machine learn-
ing and natural language processing to predict question difficulty. These
models are subject-specific and often overlook individual student differ-
ences, limiting their wider application. The work aims to examine data
of real-world testing scenarii, so that assembling and building a rich and
diverse dataset. It offers valuable insights into the factors influencing item
difficulty by giving the maximum amount of information considering the
test and the student. It presents experiments to build and train predic-
tive machine learning models for difficulty prediction. At the end, thanks
to experiments, we can show a nuanced understanding of the assessment
challenge and lay the groundwork for incorporating psychological factors
into difficulty estimation as a subsequent phase.

Keywords: Computer Human Learning Environments · Education ·
Assessments · Item Difficulty · Machine Learning

1 Introduction

In higher education, learning assessment plays a determining role in the academic
progress of students. In this context, estimating the difficulty of test questions
(items) is crucial to guarantee the accuracy, or even fairness, of student evalua-
tions. The complexity of this task arises from the diversity of assessment methods
that can be employed, as well as factors affecting the perception of the difficulty
of a question or task. The latter include not only the content of the question,
its structure (depending on its nature), or its wording, but also the individual
characteristics of the students evaluated. Faced with this complexity, the use of
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digital tools for an automatic and more objective assessment of difficulties con-
stitutes a research avenue for our work, which focuses in this article on Multiple
Choice Questions (MCQ) type items.

In this context, the characterization of assessment items difficulty raises a
complex problem. Our research aimes at this characterization through the con-
struction of a model oriented towards the measure of this difficulty strating from
traces, as well as integrating psychometric characteristics into this process. This
work aims to examine the approaches and methodologies used in the literature
to predict the difficulty of assessment items, as well as the datasets used in
these studies. Based on this analysis, our goal is to develop a dataset designed
specifically to refine difficulty predictions via machine learning.

In this paper, we focused on two pivotal aspects. First, building an exten-
sive dataset incorporating a range of factors that affect the perception of item
difficulty. Second, Machine Learning methods to achieve more precise difficulty
estimations. Our goal is to improve the accuracy and efficacy of item difficulty
prediction models. It aims to establish the foundations for a more sophisticated
and nuanced estimation, integrating more complex psychometric factors.

2 Related Works

The concept of difficulty has been the subject of study in psychology, especially
within educational and cognitive domains, by exploring the socio-cognitive pro-
cesses underlying its individuals perceptions. Researchers have examined fac-
tors such as working memory capacity, cognitive load, attentional resources, and
meta-cognitive strategies employed for challenging tasks. These researches have
analyzed factors contributing to difficulty, such as question attributes and exam-
ined abilities [4]. Other studies announced that some attributes were relevant to
question difficulty, such as question types, question structures and knowledge
depth [12]. These studies are based on manual intervention and human exper-
tise [3,13]. Complementarily, Yen (1981) demonstrated how statistical simula-
tions of latent trait models could be employed to rigorously analyze these percep-
tions of difficulty in educational assessments, providing a quantitative approach
to understanding these complex psychological constructs [18].

Data-driven approaches are also used for some MCQ-type item difficulty pre-
diction tasks. The majority of works related to predicting question difficulty, pro-
cessed the test items based on the text or a history of previous answers. Most
of them have been done in the field of Natural Language Processing (NLP).
Data-driven approaches, although limited, utilize psychometric models like the
Linear Logistic Test Model (LLTM) to predict question difficulty, leveraging a
linear relationship between latent traits and response probabilities [10]. These
models are based on item response theory (IRT) [16], wich is a statistical frame-
work used to develop, evaluate, and score assessments. Its goal is to predict
the probability that a student with a specific ability level, will correctly answer
an item. Morever, Classical Test Theory (CTT) provides a foundational frame-
work for understanding test score reliability and validity [1]. It introduces item
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difficulty and discrimination indices, shedding light on how well test items differ-
entiate between individuals of varying abilities. The reliability coefficient, often
measured by Cronbach’s alpha [17], assesses score consistency, indicating how
accurately observed scores reflect true individual differences. CTT presents lim-
itations in handling tests with differing difficulty levels.

Additionally to these works, some studies have adopted text-based meth-
ods to predict question difficulty, employing advanced NLP models. Early works
focused on MCQs, and employed deterministic bag-of-words approaches to mea-
sure similarity between question elements [2]. Additionally, transformer-based
pre-trained architectures, such as BERT (Bidirectional Encoder Representations
from Transformers) [8] can be fine-tuned for difficulty prediction by understand-
ing contextual relationships between questions and answers [5]. Furthermore,
machine learning algorithms such as Support Vector Machines (SVM) or Ran-
dom Forests can be trained on features derived from text, like semantic similarity
scores between distractors, to predict question difficulty.

According to this state-of-the-art analysis, both in terms of the methodologies
used to estimate question difficulty and the data employed for this purpose, our
investigations have revealed several notable gaps that present opportunities for
significant contributions to the field. Primarily, the data utilized in these works
typically comprise only text data from questions and answers or traces from stu-
dents’ interactions during tests. Such datasets tend to include basic information
like the content of questions or answers, time elapsed, and expected responses.
While these elements are undoubtedly valuable, they fall short of providing a
comprehensive understanding of item difficulty. They capture only a limited
aspect of the data necessary to discern real patterns in student performance.

This critical review indicates that current models overly depend on surface-
level data, which might lead to incomplete or skewed analyses of difficulty. There
is a conspicuous absence of deeper, more nuanced data inputs such as students’
cognitive processes, affective states, and interaction dynamics during the test-
taking process. Incorporating such multidimensional data could unveil richer
insights into the complexities of test difficulty and student performance.

In this context, we aim to create and enrich a significant dataset of edu-
cational traces, which will serve as a foundation for building machine learning
models to predict item difficulty accurately.

3 Data

For research purposes in computer-based learning environments, publicly avail-
able datasets are released such as the ASSISTments dataset [9], an online
tutoring system assessing students while providing pedagogical assistance. Addi-
tionally, the Academy dataset1, offered by an online learning provider, focuses
on computer science courses, with all questions being multiple-choice. Those
datasets have been evaluated extensively, and they don’t meet our needs due

1 https://cloudacademy.com/.

https://cloudacademy.com/
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to inadequate information, high missing data rates, and limited data volume,
hindering comprehensive and reliable analysis. Our research focus on the EdNet
Dataset [7], a large-scale hierarchical dataset that spans over two years, gath-
ering student interaction logs from Santa2 a multi-platform self-study solution
designed to assist students in preparing for the TOEIC test (Test of English for
International Communication).

EdNet considered the largest publicly accessible dataset, with 131,441,538
interactions of 784,309 students and 13,170 questions, with an average of 8,687
observations per question, it comprises four extensions, labeled from KT1 to
KT4. After thorough evaluation, we opted to use KT1 due to its completeness
and the relatively high level of missing values in the other extensions. KT1
contains 784,309 individual files, each corresponding to a unique user (learner).
These files capture the test-taking history of each student, detailing question IDs,
solving IDs, timestamps, user answers, and elapsed times. Additionally, EdNet
includes a ’contents’ file housing a ’questions’ file, which provides comprehensive
information on each of its 13,170 questions, including question IDs and correct
answers. This dataset offers a land to develop a more accurate dataset.

However, characterizing difficulty in educational assessment requires a
dataset that includes detailed student interactions, task completion times, and
learning resource efficiency. Thus, we organized and aggregated data to create
a tailored dataset, enabling accurate difficulty characterization across subjects
and levels. The work was executed in several stages:

– Merging learners traces: EDNet-KT1 consists of 784,309 CSV files related
to each user. All files were merged into a single flat file integrating the user’s
ID. The result is a file composed of 95,293,926 lines and 6 columns.

– Combine question information with user information: in this phase
we merge questions information from the ’Contents’ file to users traces. This
combination not only facilitates correlating user responses with specific ques-
tion characteristics but also adds information to the dataset, such as the
correct answer to the question, topics, or other relevant metadata.

– Data enhancement: this step consists on increasing the extracted data with
calculated and deduced characteristics. These designed characteristics may
include ratios, statistics, or other metrics derived from the initial data that
provide a deeper understanding of the underlying patterns in the dataset.

The final dataset takes two forms providing specific analysis perspectives:

– User-Question oriented dataset: contains information on each question
attempted by every learner. This version enables the inclusion of parame-
ters related to perceived difficulty and human factors in difficulty prediction
and characterization work. It comprises 35 columns (Table 1) and a total of
79,929,968 entries.

2 https://www.aitutorsanta.com/vn/.
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– Question oriented dataset: focuses on the characteristics and nuances
embedded in each evaluation item. It highlights essential question features,
facilitating targeted analysis. This file contains data aggregated from each
question, resulting in 13,170 entries(the number of questions proposed in all
tests), and 27 columns of questions only features, extracted from the (Table 1).

Table 1. Column Names for User-Question-Oriented Dataset

user id question id correct answer user answer

is correct elapsed time bundle id explanation id

solving id part tags deployed at

PassCountPerQues PassCountPerUser Tot answers false Tot answers correct

falseCountPerUser correctCountPerUser TotalTimeforQues TotalTimeforQuesperUser

TotalTimeforCorrect TotalTimeforFalse UserTimeforCorrectr UserTimeforFalse

AverageTimeperQues AverageTimeperUser AvergeTimeforCorrect averageTimeforFalse

averageTimeforCorrect averageTimeforfalse VarTimeforCorrect VarTimeforFalse

VarTimeforCorrectUser VarTimeforFalseUser difficulty (GT)

The next section presents some experiments of building predictive models,
applied to these datasets and the results obtained.

4 Models and Results

Before refining our dataset for enhanced predictive capabilities, we initiated
our process by training machine learning models on the intiial (non enhanced)
dataset. This preliminary phase aimed to establish a baseline for the performance
of various algorithms in predicting question difficulty. By contrasting these first
results with those obtained from our final, enriched and treated dataset, we aim
to underscore the substantial impact of our data preparation, and the value
of the elements we added to difficulty characterization. Our approach involves
identifying and integrating significant features that can improve the represen-
tation and estimation of difficulty. Through this comparative analysis, we not
only evaluate the predictive power of different machine learning models but also
assess the quality and relevance of our dataset at various stages of enhancement.
This methodology allows us to experimentally demonstrate the added value of
our work (Fig. 1) in the context of difficulty prediction tasks.

For establishing ground truth labels in our supervised learning training tasks,
we employed a straightforward and fundamental criterion: the rate of correctness
among all provided answers for every question. Predicting the exact value is
challenging due to the inherent difficulty in identifying patterns that precisely
correlate with specific values. As a result, we have opted to define three classes
of ground truth difficulty: questions with a difficulty lower than 0.3 are identified
as easy (class 0), those whose difficulty is between 0.3 and 0.6 are considered
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Fig. 1. Workflow of our Data Enhancement and Model Training tasks

of midium difficulty (class 1), and those with a difficulty greater than 0.6 are
considered difficult (class 2).

During our experiment, we systematically trained four distinct machine learn-
ing models: Logistic Regression (LR) [15], Decision tree (DT) [11], Random
Forests (RF) [14] and XGBoost (XGB) [6] These models were trained on data
before and after enhancement, on HPC MatriCS platform3. We used a classi-
cal training process involving 80% of data, randomly chosen. The validation is
simple, using the remaining 20% of the dataset.

Insights from this comparative analysis pave the way for informed decisions
regarding the most suitable model for our particular dataset and predictive goals.
To assess model performance on our dataset, we used the F1-score as we require
both good precision and recall simultaneously, to correctly identify both chal-
lenging and non-challenging items (precision) while also capturing as many of
the truly challenging items as possible (recall). For the original data, we obtained
the results presented in the table (Table 2):

Table 2. Models performance on the initial question-user oriented data.

Model LR DT RF XGB

Accuracy 0.64 0.72 0.72 0.69

F1 score 0.59 0.70 0.70 0.65

After the data enrichment tasks, the same models were trained on our two
final versions of data. For the second version of our dataset, which comprises a
set of 79,929,968 rows and 35 columns, 40% of the data were used. The sample
of data selected took into consideration factors such as homogeneity and data
integrity, insuring that the data samples are representative of the entire dataset
and do not disproportionately favor any particular subgroup, and verifying the
accuracy, completeness, and consistency of the data. The data selected around
the average number of instances per question, which is 8687 user responses per

3 https://www.matrics.u-picardie.fr.
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question, and also in an acceptable range of timing for questions to avoid ques-
tions with outlier values. Evaluation of the trained models yielded the following
results (Table 3):

Table 3. Models performance on enriched data.

Dataset Model LR DT RF XGB

Question oriented data Accuracy 0.54 0.91 0.91 0.93

F1 score 0.50 0.85 0.81 0.82

User-question oriented data Accuracy – 0.80 0.89 0.74

F1 score – 0.65 0.70 0.71

Comparing performances before and after data enrichment reveals the pos-
itive impact of adding new features and data processing on the models’ ability
to predict difficulty. Prior to enrichment, models struggled to achieve acceptable
levels of accuracy and F1 scores, as shown in (Table 2). However, following the
introduction of additional features and the improvement of data quality, (Table
3 demonstrate a significant increase in the performance of all tested models.
This substantial improvement in results justifies the effort spent on data enrich-
ment and processing. The addition of relevant features and information about
the item led us to better characterize the difficulty and hence a better prediction
of it. The performance variations among the models are notable between the
question-oriented dataset and the user-question-oriented dataset, showing the
impact of data composition on predictions. Model performance is better on the
question-oriented dataset because the data precisely concerns the questions, with
only one row per question, making it easier for models to find patterns. However,
for the user-question-oriented dataset, question data is also linked to users, and
questions appear multiple times in the dataset based on the number of students
who attempted the question. Then it makes more challenging for models to find
patterns in these data. The examination of the distribution of question density
across targeted and predicted difficulty values (Fig. 2) provides clearer vision
into the alignment between intended difficulty levels and the model predictions
(in the figure the results for XGBoost model) for the questions-oriented data.
The distribution of predicted values are more centred than targeted. However
models demonstrates commendable accuracy in both instances, and that is the
purpose of using classes for labeling the ground truth, the density in each class
is the same in factor of the accuracy of the model.

By comparing model performance before and after data enhancement, we can
clearly see the impact of our data processing and enhancement efforts, focused
on adding the most important details and features about the items to help us
better understand and characterize item difficulty. These preliminary results
serve as the basis on which we will build a more complete and refined analysis,
thus marking the beginning of our exploration. Comparing model performance
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(a) Question density by ground truth diffi-
culty values

(b) Question density by predicted difficulty
values for question-oriented data

Fig. 2. Distribution of ground truth difficulty vs predicted values.

highlights the importance of the richness of our dataset in characterizing item
difficulty and provides direction for future approaches to explore and implement
in our quest for the optimal difficulty characterization and estimation.

5 Conclusion

In this paper, we focus on characterizing the difficulty of evaluation items. Begin-
ning with a detailed exploration of existing methodologies, we then concentrated
on constructing a robust and rich dataset containing maximum information
about items, suitable for the complexities of difficulty estimation. The process
involved data preparation resulting in a dataset ready for in-depth analysis.
After laying the groundwork, we proceeded to test our dataset, using different
predictive models to assess their effectiveness in capturing and predicting chal-
lenges. The results of these model evaluations not only provide valuable insights
but also highlight the importance of our rich dataset for characterizing item
difficulty and give us an idea of the next approaches to explore and implement
for effective difficulty estimation techniques. Looking ahead, an ongoing exper-
imental study, particularly with students in computer science and psychology,
aims to verify several hypotheses about inherent item characteristics influencing
perceived difficulty, as well as mechanisms supporting this perception, involving
continuous improvement and expansion of the dataset by incorporating psycho-
logical dimensions. This work should lead to the definition and implementation
of a difficulty “estimator”, improving our understanding of the complex interac-
tion between learners and the components of the assessment. In the longer term,
it will be a matter of integrating this prediction into the algorithms for the auto-
matic generation of assessment tests with targeted difficulty and of focusing on
other types of items.
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